

14th
International Neutrino
Summer School
at the Fermilab NPC
07–19 August 2023

Ed Kearns Boston University

kearns@bu.edu

CDF, MACRO, Super-K, K2K, T2K, MiniCLEAN, LBNE, LAriAT, Hyper-K, EMPHATIC, DUNE

LECTURE 2

Lecture 1:

Early stuff – history Atmospheric ν Anomaly Elements of the Experiment

Lecture 2:

Resolution of the Anomaly
Current results
Future experiments

Event Categories → Neutrino Energy

1st Super-K paper – March 1998

Measurement of a small atmospheric ν_{μ}/ν_{e} ratio

firmed the existence of a smaller atmospheric ν_{μ}/ν_{e} ratio than predicted. We obtained $R=0.61\pm0.03({\rm stat.})\pm0.05({\rm sys.})$ for events in the sub-GeV range. The Super-Kamiokande detector has much greater fiducial mass and sensitivity than prior experiments. Given the relative certainty in this result, statistical fluctuations can no longer explain the deviation of R from unity.

25.5 kton yr (414 days data) Sub-GeV only Two independent analyses

2nd Super-K paper – May 1998

Study of the atmospheric neutrino flux in the multi-GeV energy range

hard to imagine counting half as many of the right compared to the left

06:70

Discovery of Neutrino Oscillations

2015 Nobel Prize: Takaaki Kajita

1-Slide Review: Two Flavor Neutrino Oscillations

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \frac{1.27\Delta m^2 L}{E}$$

km and GeV or m and MeV

model production height (depends on energy, important for down-going ν)

3rd Super-K paper – August 1998

Note: lepton direction is not assumed to be neutrino direction Monte Carlo is supposed to model the data as perfectly as possible

3rd Super-K paper – August 1998

FIG. 2. The 68%, 90% and 99% confidence intervals are shown for $\sin^2 2\theta$ and Δm^2 for $\nu_{\mu} \leftrightarrow \nu_{\tau}$ two-neutrino oscillations based on 33.0 kiloton-years of Super–Kamiokande data. The 90% confidence interval obtained by the Kamiokande experiment is also shown.

Long-Baseline Experiments must adapt to low Δm^2

4th and 5th papers – Upward Going Muons

confirmed oscillations parameters with statistically and systematically different data set

Independent Confirmation – MACRO upward- μ

Monopole Astrophysics Cosmic Ray Observatory

Independent Confirmation – Soudan 2

 μ /e double ratio resolves iron target issue from 1980's Later: zenith angle dependence

2000 Tau Neutrinos Favored over Sterile Neutrinos in Atmospheric Muon Neutrino Oscillations no matter effect suppression for E > 15 GeV & no NC disappearance

2004 Evidence for an Oscillatory Signature in Atmospheric Neutrino Oscillations

2006 Measurement of Atmospheric Neutrino Flux Consistent with Tau Neutrino Appearance

1998 2023

Next: 2023 and beyond 3-flavors, matter effects, mass ordering

The Three Unknowns of 3-flavor ν Oscillation

"Mass Ordering" a.k.a. "Mass Hierarchy" or sign of Δm^2 ?

"Octant": is θ_{23} different from 45°?

CP violation?

From 2016 RPP by PDG, based on 1601.07777 (Bari group)

We can investigate all of these with atmospheric neutrinos

Three Flavor Neutrino Oscillation in Matter

Freund, M. PRD 64 (2001) 053003

$$P(\nu_{\mu} \to \nu_{e}) \cong T_{1} \sin^{2} 2\theta_{13} - T_{2}\alpha \sin 2\theta_{13} + T_{3}\alpha \sin 2\theta_{13} + T_{4}\alpha^{2}$$

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$$

$$T_1 = \sin^2 \theta_{23} \frac{\sin^2 [(1-x)\Delta)]}{(1-x)^2}$$

CP violating

$$T_2 = \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}$$

CP conserving

$$T_3 = \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}$$

$$T_4 = \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(x\Delta)}{x^2}$$

for anti-neutrinos sign of x and sign of $\sin \delta_{cp}$ is changed

Resonance condition for v_e if normal ordering for $\bar{\nu}_e$ if normal ordering

sign encodes mass ordering:

$$\Delta m_{31}^2 = m_3^2 - m_1^2$$

> 0 normal

< 0 inverted

$$\begin{array}{lll} \text{mass ordering:} & \Delta m_{31}^2 = m_3^2 - m_1^2 & \Delta = \frac{\Delta m_{31}^2 L}{4E} & x = \frac{2\sqrt{2}G_F N_e E}{\Delta m_{31}^2} & \sim \frac{E}{12 \text{ GeV}} \end{array}$$

Oscillograms

Remember:

Statistics is lower at high energy Pointing is better at high energy

Matter effect resonance in v for normal ordering

If inverted ordering, top/bottom plots exchange and the resonance is in anti-v

Super-K I-II-III-IV (1996-2018) data set

35000 atmospheric neutrinos

Blue contributions are muon neutrinos Drives 2-3 parameter determination Normalizes flux and cross section Built-in "near detector")

T. Wester

Super-K I-V data set finely binned

SK IV-V fully contained single ring samples with neutron tagging selection

Red contributions are **electron neutrinos**Select categories with higher energy
and good pointing

Contribution from ν_e appearance: 200 events (normal ordering) 50 events (inverted ordering)

Neutrino – Antineutrino in Water Cherenkov

Decay electrons: More from neutrinos than anti-neutrinos

$$u_e + p \to p + e^- + \pi^+ \longrightarrow \pi^+ \to \mu^+ \to e^+$$
The absorbed in H2O No decay e No decay e No decay e

T. Wester

Neutron captures: More for anti-neutrinos than neutrinos, observed in SK IV+

$$\nu_e + n \rightarrow e^- + p$$
 $\bar{\nu}_e + p \rightarrow e^+ + n$

- ~200 µs capture time on hydrogen
- 26% efficiency, neural net selection

Super-K I-V Results

2-3 Parameters shown earlier this talk

Mass Ordering and δCP : Prefer Normal ordering ∼ 2-sigma level* Result exceeds sensitivity

^{*} See upcoming paper for precise statement

Super-K I-V Results

2-3 Parameters shown earlier this talk

Mass Ordering and δCP : Prefer Normal ordering \sim 2-sigma level* Result exceeds sensitivity

^{*} See upcoming paper for precise statement

Hyper-K (189 kT)

Third Generation Large Underground Detectors

Interest in neutrino oscillation has motivated a third generation of massive underground detectors.

Off scale in mass: **IceCube, KM3Net** but higher energy threshold (10 GeV-ish) and limitations in detailed event identification (i.e. not proton decay capable)

arXiv:1508.07166v2

JUNO Jiangmen Underground Neutrino Observatory

20 kton liquid scintillator detector

[geb] 0 ve CC @9 GeV 40 20 -20 -40--60

50 -100 -50 0 50

Mariam Rifai MMTE 2023

machine learning

Three Generations of Water Cherenkov Detector in Kamioka Japan

- **186.5** kton fiducial volume (258 kton total)
- Optically separated into
 - Inner Detector
 - **20,000** 50cm High QE B&L PMTs
 - \blacksquare + O(1) k mPMT Modules
 - Outer Detector 1885 8" PMTs
- Pure water neutron tagging > 40%
- Now under construction Data taking in 2027

50 cm HQE Box&Line PMT

 $\begin{array}{l} \text{SK QE} \times 2 \\ \text{SK } \sigma_{\tau} \times 2 \\ \text{SK Pres. Tol} \times 2 \end{array}$

20% B&L PMT coverage+ equivalent light collection from mPMT

Sensitivity: 10-year Hyper-K atmospheric neutrinos

https://arxiv.org/pdf/1805.04163.pdf

Width of bands reflects unknown δ_{CP}

DUNE (Deep Underground Neutrino Experiment)

Liquid Argon Time Projection Chamber (LArTPC)

Event displays courtesy S. Zeller

1.5 km deep in SURF (South Dakota) modular ... up to 4 x 10 kt total fiducial mass Neutrino beam from Fermilab Sensitive to ν_e from supernova

Tarak Thakore

$$P_{\nu} = P_{p} + P_{had} + P_{\mu} = (E_{\nu}, \vec{p}_{\nu})$$

DUNE: Resolution of Oscillation Pattern

Binned quantity is reconstructed neutrino direction (not lepton direction as in SK/HK)

Kilometer-scale arrays

IceCube & DeepCore & upcoming Gen2

KM3Net: ARCA and ORCA

kilometer-scale ice/water Cherenkov detectors

Huge statistics, specializing in highest energy neutrinos

Deep Core (10 Mton): high density infill to achieve 10 GeV threshold

Gen2 Upgrade (2 Mton): seven more strings with new PMT sensors

achieve 1 GeV threshold

IceCube-DeepCore Neutrino Telescope

Sanjib Kumar Agarwalla

Earth Tomography: IceCube-DeepCore

MMTE 2023 (06/07/2023)

12

Track-like (muon neutrino)

Cascade-like (electron, tau neutrino, NC)

Agarwal, Koskinen

4 GeV upgoing u_{μ}

Deep Core with Upgrade

IceCube DeepCore 2023 Golden Sample

23000 events (10% of full data set)

Enormous statistics: hope to take real oscillogram

- Measure 3D distortions in reconstructed [energy, zenith, particle type]
 - Robust against systematic uncertainties
 - Particle identification discriminates $v_{u,CC}$ interactions vs all other flavors/channels

Koskinen

Thanks for all your attention and questions!