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Histo ry of the Un iverse e

Cosmic Neutrino Recombination
Decopuling BBN (CMB Decoupling) Large Scale Structure

Image Credit: NASA
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Superposition of Sound Wa_\fes

Image Credit: Hincks 7



Linear Polarization of the GMB
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The CMB provides a snapshot of the universe as it existed during recombination
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..plus the imprints of the structure between us and the last scattering surface.
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CMB Diffusion Damping -

Random walk of CMB photons
prior to recombination smooths
out fluctuations below the free
streaming length of photons
The damping scale of photons
is affected by the scattering
rate and expansion rate

TCQZ ~ (UTneH)_1

Image Credit: Hu
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Li'ght RéIiCs Affect CMB Dampmg ‘S'Cale, e
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Increasing N_. increases the
expansion rate prior to
recombination

With 6_ fixed (which is
measured very well with
current observations),
increasing N_. leads to
increased damping

The damping scale is also
impacted by the free electron
density around recombination,
which is affected by the
primordial helium abundance

Image Credit: Wallisch (2018)  '°



ight Relics Densy Pertrbations

e The density of light relics are
perturbed in the same way as the
other components (for adiabatic
initial conditions)

e The fluctuations of free-streaming
light relics propagate at the speed
of light, faster than the sound
speed of the photon baryon
plasma (c_*~c?/3)

e The gravitational attraction of the
light relics pulls the acoustic peak ke bk —e—emy
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Bashinsky, Seljak (2004); Baumann, Green, JM, Wallisch (2016); Image Credit: Eisenstein 16
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9.0F o Fluctuations in the density of free-streaming light
6.0 | relics leads to a phase shift of the CMB acoustic
3.0F, peaks, allowing them to be distinguished from
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CMB Tests of BBN

e The CMB power spectrum is
sensitive to both N_. and Y, and can
therefore be used to test BBN

e Both parameters affect the damping
scale, but they are not totally
degenerate because N . has other
effects (including the phase shift)

e BBN predicts a particular
relationship between N_.and Y,

e Current observations are consistent
with standard BBN, and place
constraints on non-standard
scenarios (like time-dependent N_,)
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Constraints on the Light Relic Density

Current CMB-34
Constraint Target
N F — 2.924-0.36
e 2037 AN < 0.060 (95%)

(95 %, Planck TT,TE,EE+lowE)
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Planck (2018), CMB-S4 (2019) '
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Baumann (2018); Akita, Yamaguchi (2020




normal hierarchy (NH)
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The low temperature of
cosmic neutrinos and the
mass-squared splittings
measured from neutrino
flavor oscillations imply that at
least two mass eigenstates
are non-relativistic today

T,0=195K
— 1.68 x 107%eV

n,.o0=112cm™?

Super-Kamiokande (1999); Sudbury Neutrino Observatory (2001); CMB-S4 (2016) %2
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k)[> " m, = 58 meV]/P(k)[>_m, = 0]

The large velocities of cosmic
neutrinos causes them to free stream
out of potential wells and suppress the
growth of structure on scales smaller
than their free-streaming length
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Suppression of matter clustering due to massive neutrinos
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Hu, Eisenstein, Tegmark (1998); Cooray (1999); Abazajian, et al (2011); Green, JM (2021) %*
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:Linear | Nonlinear

CMB Lensing

Galaxy Density

Cluster Counts

Sensitivity regimes of various probes of clustering

Galaxy number density, galaxy
weak lensing, counts of galaxy
clusters, and weak lensing of the
cosmic microwave background
(among other probes) are
sensitive to the clustering of matter
across a wide range of scales and
redshifts

Unfortunately, the free-streaming
scale cannot be resolved, and we
must rely on a comparison of
power at late and early times in
order to measure neutrino mass

Green, JM (2021)
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CMB Lensing ReConstruct,ithéps Matter Overdensities

400 Measurement Planck (2018) 29
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Measuring suppression of clustering with CMB-S4 lensing

CMB lensing provides a clean
probe of matter clustering in a
regime that is mostly
insensitive to details of
nonlinear growth and
astrophysical baryonic
feedback effects
Suppression will be clearly
visible with upcoming
experiments, but is subject to
two important degeneracies:

o Matter density

o  Primordial Amplitude /

Optical depth

CMB-S4 (2016); Green, JM (2021)  *°



DESI projections (Font-Ribera++ 2014b)

Local Expansion

BOSS-DR12 gal BAO |

DESI Lya BA

{

BOSS-DR12 Lya BAO

Spectroscopic galaxy surveys
such as DESI will precisely
measure the expansion history
using Baryon Acoustic
Oscillations (BAO) as a
standard ruler

This provides a precise
determination of the matter
density, essential for a
calibration of the amplitude of
the matter power spectrum

Font-Ribera, et al (2014)
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e Measurements of the
CMB power spectra at
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Figure Credit: Reichardt (2015) %2



CMB-S4 Simons Observatory With DESI

0.010 .
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CMB-S4 (2016); Simons Observatory (2018); Planck (2018) *°






Energetic
electron

Hot plasma

CMB

\ Comptonized

photon

photon

Al (MJy sr')

Wavelength (mm)
10

T T
I 30 44 70 100 143 217 353 545 857

20 keV )

Galaxy clusters are the most
massive bound structures in
the universe

Cluster abundance depends
on the underlying cosmology
CMB photons are
up-scattered by the hot gas
in galaxy clusters, leading to
a spectral distortion that
allows CMB surveys to
detect galaxy clusters to high
redshift

Sunyaeyv, Zeldovich (1970, 1972); Image Credit: Basu, et al
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WIDE SURVEYS (fiy =67%): CMB-HD — S4-WIDE 7
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Upcoming CMB surveys will
create a huge catalog of galaxy
clusters, including thousands at
high redshift, enabling insights
into the growth of cosmic
structure

Cluster masses can be
calibrated with measurements
of gravitational lensing of
galaxies and/or the CMB

Raghunathan, et al (2021) %
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The abundance of galaxy clusters is sensitive
to the suppression of matter clustering
imprinted by massive neutrinos

Combined with a measurement of the
primordial amplitude from the CMB, cluster
abundances can measure neutrino mass with
similar precision to CMB lensing

The redshift dependence of the cluster
abundance also allows simultaneous
constraints on other physics that may impact
structure growth, like the dark energy
equation of state

Raghunathan, et al (2021) %



Galaxy Lensing and Clustering

Imaging surveys like LSST with the
Rubin Observatory will perform
measurements of weak lensing and
clustering of galaxies, thereby
probing the matter power spectrum
Galaxy bias and baryonic feedback
pose some challenges for accurate
measurement of the underlying
spectrum

Constraints are expected to be
comparable to those from CMB
lensing, though with a different set
of systematic errors

Image Credit: NASA, ESA, STScl 38



Upcoming cosmological surveys offer
several paths to measure the
absolute mass scale of neutrinos, all
utilizing the suppression of matter
clustering due to massive neutrinos
These measurements are subject to
different systematic errors

Combining these probes will provide
useful cross-checks and ensure that
neutrino mass measurements are
robust even in models beyond ACDM

Madhavacheril, Battaglia, Miyatake (2018); Mishra-Sharma, Alonso, Dunkley (2018); Yu, et al (2018)  3°
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Cosmology is very informative for neutrino physics
e Observations of the CMB, BBN, and large scale

4 structure provide sensitivity to quantities like N_. and
? > m_(among others)

f/ e Cosmology provides an important complement to

— = K lab-based neutrino measurements
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Chang, Huffenberger, et al (2022)



