Jenie Event Library

LIVERPOOL

 $\bullet \bullet \bullet$

Marco Roda

Generator Tool workshop 15 March 2023 Fermilab

Overview

- Concept of the event library
 - Necessary inputs and desired output
- how this has been used in the past
 - \circ \quad How it worked
 - How it failed
- Possible development lines
- All the technicalities I'm going to mentioned are described in the manual

Event library concept

- We bring to the extreme consequences the concept of spline
 - splines = precalculated integrated cross sections
- If a user can provide the integrated cross sections and enough events for the various energies
 - GENIE can simply pick up random events for a given energy
 - Sampling the energy according to the energy distribution of the cross sections
- The usual GENIE spline rules apply
 - We need a spline for every combination of
 - neutrino flavour
 - target
 - "Process"
- In the event library we are relaxing the concept of process
 - GENIE can be completely agnostic about the content of the used events
- This process is compatible with our geometry drivers!
 - This can be possible solution for easy tests of other generators and BSM physics in our detectors

Inputs

• The input is a ROOT file

- Divided in directories
 - target isotope/cc/neutrino_flavour
 - target isotope/nc/nu or nu_bar
- Each directory must contain
 - **T**Graph xsec units of 10^{-38} cm² as a function of the energy in GeV
 - TTree records
- The TTree is a simple structure:
 - o Enu
 - ⊃ prod_id
 - nparts
 - \circ pdg[nparts]
 - E[nparts], px[nparts], py[nparts], pz[nparts]
- One entry for each neutrino interaction

Outputs

- Spline generation
 - \$ gmkspl -p 14 -t 1000060120 -o evtlibxsec.xml --tune EX00_00a_00_000
- Event generation
 - Š gevgen -e 1,3 -f 1 -p 14 -t 1000060120 --tune EX00_00a_00_000 --cross-sections /path/to/evtlibxsec.xml
 - \circ of course all the experiment specific applications can be used too
 - 0
- The combination of flavour, CC/NC, target and energy of the interacting neutrino is generated
 - based on the flux and cross section convolution
 - As usually done with the generator
- The event with the closest energy is picked from the records
 - \circ A random rotation around the beam is applied
- The metadata of the event are very poor
 - We can only fill what information is in the record

(Current) Limitations

- We don't have the scattering type
 - \circ Unless stored the prod_id
 - its meaning will be obscure anyway for GENIE and most likely for all downstream code
- We cannot store relation between mother-daughters
 - \circ Decays are not well represented in this model
 - The assumption being that all decays are not visible by the detector
- No reweight handles
 - the lack of information in the Interaction and in the particle stack might create issues for possible reweight modules
 - You can only act based on the particle content
 - Dedicated reweight modules needs to be written to extract the correct information and then reweight

(Known) Use cases

• This tool was developed by NOvA collaborators

- Their goal was to use it to interface with NuWro
- This was also how the tool was developed and tested

• SBND attempted to use it with GIBUU

- Unfortunately it was a failure
 - GIBUU produces weighted events and the library does not handle weights when selecting the events
- No known attempts were made in the context of BSM physics
 - They do know of the tool, we haven't got a formal feedback about how it has been used
 - But there are probably limitations due to tool itself
 - Limitation to CC and NC process only
 - To move forward we may need some inputs here

Possible developments

- Adding the possibility to including weight in the search of the library

 Help interface with GIBUU
- Make the structure more flexible
 - \circ $\,$ We are not limited to CC and NC $\,$
 - We can add additional and optional categories
 - This might be useful for BSM physics
- The GENIE resources for this project are very limited
 - But external collaborators are always welcome