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PREAMBLE

* Nuclear Many-Body Theory is based on the tenet—strongly supported
by low-energy nuclear phenomenology—that nucleon dynamics below
pion production threshold can be described by the Hamiltonian
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and the associated electro-weak current operator
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% In the late 1970s, significant two-nucleon meson-exchange current
(MEC) contributions, leading to the excitation of 2p2h final states, were
advocated to explain inclusive electron scattering cross sections in the
dip region, between the quasi-elastic and A-production peaks,
corresponding to w &~ Q*/m
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EARLY ELECTRON SCATTERING STUDY

% The amount of strength needed to describe the data depends on the
treatment of the one-nucleon current contributions

* Calculations by
T.W. Donnellly

et al., PLB 76, 393 (1978).

RFGM + MEC

* Data from E.J. Moniz
et al., PRL 26, 445 (1971)

* Most studies only considered transitions to 2p2h final states, neglecting
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interference between 1plh and 2p2h amplitudes altogether
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ENTER NUCLEAR DYNAMICS

* Taking into account the effects of nuclear dynamics not included in the
RFGM leads to the appearance of sizeable asymmetric tails, originating
from both initial state dynamics—primarily Short-Range Correlations

(SRC)—and Final State Interactions (FSI)
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* One- and two-nucleon current contributions should be treated

consistently, within a unified realistic model



MORE ADVANCED MODELS: SUSA

% In the phenomenological superscaling model (SuSA) the single-nucleon
knock out contribution to the cross section is obtained from electron
scattering data

* MEC contributions computed within the REGM, including only

transitions to 2p2h final states
E=560 MeV, 660", 4, =508 MeV/c
——
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* J.E. Amaro et al.,
Eur. Phys. J. Spec. Top.
230, 4321 (2021)

* Carbon data from
P. Barreau et al., NPA 402,
515 (1983)
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* The SuSA model is inherently unable to take into account interference
between 1plh and 2p2h amplitudes

5/20



MORE ADVANCED MODELS: FACTORISATION

* Factorisation of the nuclear cross section allows to treat one- and
two-body current contributions within a consistent framework, using
spectral functions obtained from a state-of-the-art microscopic model of
nuclear dynamics and fully relativistic current operators

* N. Rocco et al., PRL 116,
192501 (2016)

+ Carbon data from
R. Sealock et al., PRL 62,
1350 (1989)
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* Transitions to 1plh final state induced by the two-nucleon current are

neglected
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RECENT STUDIES: ED-RMF MODEL

* Relativistic Mean-Field Model, extended to consistently describe FSI
and corrected to account for ground-state correlations;
T. Franco-Munoz et al. arXiv:2203.09996 [nucl-th]

% Fully relativistic current operators, transitions to 1plh final states and
interference contributions included

x Figure courtesy of T hee=
Raul Gonzales-Jiménez oI

* Data from H. Dai et al. ®
PRC 99, 054608 (2019) 0
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% Distinct energy dependence of MEC contributions
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HINTS FROM GFMC CALCULATIONS

* The Green Function Monte Carlo (GFMC) technique allows one to
perform ab initio calculations of the nuclear response in the non
relativistic regime. All one- and two-body current contributions,
including interference, consistently taken into account

* Lovato et al., PRC 91,
062501 (2015), red: 0.035 |
one-body current only; 0.030 |

blue: full calculation i
0.020 |
* Transvere response of ;

Carbon at ¢ = 600 MeV
from J. Carlson et al. PRC
65, 024002 (2002);
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% Transitions to 1plh final states and interference appear to play a critical
role
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NEUTRINO-NUCLEUS INTERACTIONS

% State-of-the-art models of electron-nucleus scattering largely fail to
explain the measured neutrino cross sections in terms of single-nucleon
knock out induced by the one-body current
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* Benhar et al. PRL 105,
132301 (2010)

* MiniBooNE data,
PRD 81, 092005 (2010)
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1, [aev]

Processes involving MEC—somewhat misleadingly referred to as 2p2h
contributions—have been advocated as the main source of the missing
strength
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NEUTRINO-NUCLEUS INTERACTIONS

» Compared to the electron-nucleus cross sections, the measured
neutrino-nucleus cross sections involve two important differences:

» the average over a broad neutrino flux, which severely hampers a
clear-cut identification of different reaction mechanisms
> a large contribution of the axial-vector current
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* Jen et al. PRD 90, 093004
(2014); dipole fit with
M = 1.03 GeV
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* The size of the contribution from two-nucleon currents is largely driven
by the uncertainty on the axial structure of the nucleon
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Qz—DEPENDENCE OF THE AXIAL FORM FACTOR

% The available data—from, e.g., MiniBooNE [PRD 81, 092005 (2010)] and
T2K [PRD 92, 112003 (2015 )] can be explained by significantly
increasing the nucleon axial mass from its canonical value
M4 = 1.03 GeV. However, in the absence of a convincing motivation,
this prescription appears to be largely arbitrary

» Comparison between the
results of Park et al. [PRD
105, 054505 (2022)] (full
line) obtained from lattice
QCD, and the dipole
parametrisation
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* At Q? £ 0.5 GeV? the dipole fit with M4 = 1.2 GeV is remarkably close

to the results of Park et al,
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COMPARISON TO MINIBOONE DATA (rroM OB’s TALK AT NUINT22)

* Replacing the M4 = 1.03 MeV dipole parametrisation with the lattice
QCD axial form factor of Parks et al. leads to a ~ 10 — 15% enhancement
of the single-nucleon knock out cross section, entailing a corresponding
reduction of the missing strength

0.9 > cosf, > 0.8

* Theoretical calculations
carried out using a
realistic model of the
carbon spectral function
[same as in PRL 105,
132301 (2010)]
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* Similar pattern observed at all muon emission angles
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2 1.6 T T T

bt
@

(1/A)d?a /d cos O,dp,, [10-¥cm>GeV ]

(1/A)d?a /d cos O,dp,, [10-*cm?GeV ]

o

0.4 0.6 0.8 1 1.2 14 0.2 0.4 0.6 0.8
T,[GeV] T,[GeV]

o
o




COMPARISON TO T2K DATA (rroM OB’S TALK AT NUINT22)

* A comparison to T2K CCQE data [K. Abe et al.. PRD 93, 112012 (2016)]
suggests in this instance there is less room for contributions other than
single-nucleon knock out

0.80 < cosf, < 0.85 0.85 < cosf, < 0.90

(1/A)d%0 /d cos 0,dp, [10-cm>CeV ']
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* This observation is consistent with the results of the analysis of T2K
data based on the dipole parametrisation of the axial form factor,
yielding M4 = 1.26 GeV (to be compared with M4 = 1.35 GeV
reported by MiniBooNE)
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% Similar pattern observed at all muon emission angles

0.70 < cos 6, < 0.80 0.60 < cosf, <0.70
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SIMILAR ANALYSIS BY SIMONS ef al. (ARX1v:2210.02455 [HEP-PH])

* MiniBooNE data analysed using the GFMC and SF formalisms and
different prescriptions for the axial form factor
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ONE- AND TWO-NUCLEON CURRENT CONTRIBUTIONS

do /dT,d cos§, [10~*'cm?/MeV]
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* SF results do not include interference
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COMPARISON TO T2K DATA
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SUMMARY & OUTLOOK

* The measured neutrino-nucleus cross sections exposed specific features
of MEC contributions which had not, or could not, been studied by
electron scattering experiments

% One- and two-nucleon contributions to the nuclear cross sections must
be treated consistently within a realistic model of nuclear dynamics,
including interference and using fully relativistic currents

* Recent results suggest that the role of interference contributions
involving 1p1h transitions induced by MEC, which received little or no
attention in electron scattering studies, may, in fact, be important

* While, in general, MC simulation are inherently unable to include
interference effects, the distinct energy dependence emerging in the
MEC 1p1h sector naturally lends itself to a simplified treatment based
on, yes, a modification of the nucleon form factors.
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Thank you!
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PROCESSES INVOLVING TWO-NUCLEON CURRENTS

P Pl P Pl P Pl
s T - R TR
Q Q
hy ho hy ho hy heo
Q
(a) (b) (©)
i 23 P Pl
S Attt I S e
« A
Qy Q
f hy ho hy ho h%/l
(@ ()
; ; ; ) P2 ) Pl
Pi P2 4 P2
Q Q
s T et = e LR -
Q Q
hy ha hy ha
®




THE TROUBLE WITH FLUX AVERAGE

% Inneutrino-nucleus interactions, e.g. , v, + A — i~ + X, the beam
energy is unknown, and so is the energy transfer . As a consequence,
different reaction mechanisms contribute to the cross section at fixed
muon energy and emission angle

* This problem clearly emerges from the analysis of electron-scattering
data corresponding to different beam energies
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IDENTIFICATION OF DIFFERENT MECHANISMS

* While involving somewhat different assumptions, several models agree
in predicting that the MiniBooNE data can be explained taking into
account the contribution of processes involving two-nucleon currrents
(MEC), associated with 2p2h final states

» Valencia model: Nieves et al > Superscaling: Megias et al
L, 0.8 <cosd <09
Full Model 25 T T 4 T T T T

S Full QE (with RPA)

8 - NoRPA.No Mulinuc. T *  MiniBooNE
= — NoRPA No Multin., M, =132 201 n N —.— QE+MEC B
2 15 B QE

‘2 MA=1 049 GeV 15F MEC

o 0.80 < cos 0 <0.90

Z w B

g 10[- 1
o

S 05 B
o2 S5k b
=

0 L L L L L L LT L v/'
0.5 1 1.5 k= 1 1 1 1 L 1 I
T, (GeV) 0 02 04 06 08 1 12 14 16 18

* Assessing the role of the 2p2h sector requires an accurate description of
the dominant single-nucleon knock out process
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