

Experience Implementing GiBUU in SBND Simulation

Leo Aliaga University of Texas at Arlington March 16, 2023

Workshop on Neutrino Event Generators Mar 15-17, 2022

Introduction

GiBUU Implementation for SBND

Motivation

» The GiBUU project provides a unified theoretical and simulation framework for particle interactions with nucleus in a wide energy range (MeV-GeV)

- Based on first-principles interactions
- » GiBUU propagates particles from the initial interactions using a transport model (the BUU equation) which describes the time evolution of the Wigner transform of the real-time Green's function

GiBUU showed good agreement (shape and normalization) with results from many neutrino experiments, including Ar targets (MicroBooNE)

Motivation

- Not implemented as an event generator yet **>>**
 - 0 Larsoft.
- Our first application is the SBN physics program **>>**

Advantages

- 0 efficiency, neutrino energy reconstruction, etc.
- 0

Our plan is to implement GiBUU as an alternative generator, event by event, in

An independent account for corrections coming from simulations: purity (signal-to-bkg migrations),

Crucial for extrapolations in oscillation analysis (model dependent analysis) and important for model independent measurements (such as neutrino-Ar cross sections) and to understand in BSM searches

GiBUU weighted events

» The GiBUU's output is a list events

These weights

- Each event has a weight
- can have negative values (if destructive interference terms, such as some 0 resonances which are relevant for higher energies)
- have to be added to obtain the cross section for any variable (neutrino, FS, etc)

These cross sections have to be converted into a generated event-by-event interaction and propagated through the detector

GiBUU Implementation for SBND

General approach

- - For negative weights we take the absolute value to produce events. 0
- results can be calculated by subtracting both.
- » We use the flux and geometry GENIE infrastructure to propagate those GiBUU events in the detector geometry (SBND).

» The first step is to generate GiBUU events with (reasonable) high statistics and store them in a standard format we can use. We produce two libraries, one for positive and one for negative weights

» We made two productions (one corresponding to a negative and one for positive weights). The final

GiBUU weights

- » GiBUU weights have a wide distribution that span over several orders of magnitude
 - Not only depend on the neutrino energy but the different processes.

GiBUU Implementation for SBND

GiBUU weights

- » GiBUU weights have a wide distribution that span over several orders of magnitude
 - Not only depend on the neutrino energy but the different processes.

- » In a first approach, we tried to use the event Library Interface (EvtLib) from GENIE (available in version >= 3.2)
- » Unfortunately the EvtLib does not handles weighed library inputs and does not propagate the interaction mode of external generators)

Libraries

- » A standalone code to generate GiBUU events and create the libraries
 - We use the most recent GiBUU version (2021)
 - 0 completeness
 - The library contains all neutrino interaction flavors (ν_{μ} , ∇_{μ} , ν_{e} , ∇_{e} , and NC and CC).

Only interactions in Ar40 are produced for now. We need to expand to other materials for

Each entry has:

- Neutrino energy, weight, process ID (QE, 2p2h, etc)
- Array of final state particles: ID and kinematics •

Libraries

- » A standalone code to generate GiBUU events and create the libraries
 - We use the most recent GiBUU version (2021)
 - 0 completeness
 - The library contains all neutrino interaction flavors (ν_{μ} , ∇_{μ} , ν_{e} , ∇_{e} , and NC and CC).
- - library
 - 0 vs GiBUU cross section. For instance: $w = \sigma^{GiBUU}_{v\mu CC} / \sigma^{GENIE}_{v\mu CC}$

Only interactions in Ar40 are produced for now. We need to expand to other materials for

Each entry has:

- Neutrino energy, weight, process ID (QE, 2p2h, etc)
- Array of final state particles: ID and kinematics •

» A code (ART module based on **GENIEGen**) generates and replaces GENIE events with GiBUU events • We keep the interaction vertices and use the neutrino information to find an event in the GiBUU

We calculate and propagate a weight to account for the difference between the inclusive GENIE

Choosing the GiBUU entry

- » The GiBUU entry is chosen given the distributions of weights
 - This distribution is made using a narrow neutrino energy: $\Delta = 0.001$ GeV
 - An entry from the library from a random selection. 0
 - Given the wide span of the weights, the challenge is not 0 repeating multiple times entries with very large weights

GiBUU Implementation for SBND

Choosing the GiBUU entry

- » The GiBUU entry is chosen given the distributions of weights
 - This distribution is made using a narrow neutrino energy: $\Delta = 0.001$ GeV
 - An entry from the library from a random selection.
 - Given the wide span of the weights, the challenge is not repeating multiple times entries with very large weights
 - We add a random rotation around the 0 neutrino axis for the final particles
 - This introduces some 0 randomization and reduce the cost of repeating events

GiBUU Implementation for SBND

Prof-of-principle: Full implementation for SBND

Short-Baseline Near Detector

GiBUU Implementation for SBND

Short-Baseline Near Detector

neutrino analysis:

- **Near Detector: SBND >>**
- **Far Detector : ICARUS** \rightarrow

Same neutrino beam, nuclear target and detector technology (LAr TPC detectors) to reduce systematic uncertainties to the % level.

v-Ar interactions: with an order of magnitude more data than is currently available (5000 v events/per day)

In addition to the sterile and cross-section programs, the SBND large detector mass and proximity to intense beams enable a broad physics program such BSM searches

GiBUU Implementation for SBND Leo Aliaga

Short-Baseline Near Detector

Large-mass Liquid Argon Time Projection Chamber (LArTPC)

- 3D reconstruction with a mm position resolution **>>**
- Fine-granularity calorimetry $\rangle\rangle$
- Excellent particle identification with dE/dx information **>>**
- Low energy thresholds: few MeV **>>**

Photon Detection System (PDS)

- Novel technology of PMTs and X-Arapucas. **>>**
- Scintillation & reflected light => high and uniform \rightarrow light yield and excellent timing resolution

Cosmic Ray Tagger (CRT)

Timing and position resolution allows for triggering \rightarrow on entering/exiting particles

Cold commissioning - Summer 2023

GiBUU Implementation for SBND

Implementation

- » We have implemented GiBUU into LarftSoft
 - analysis framework (CAFAna)

• We generate GiBUU events and propagate them through the full simulation, including the final

Interaction modes

» We also propagate the GiBUU process ID through the simulation

SBND

• This information is crucial to calculate the neutrino interaction systematics.

Other checks: enhanced QE and 2p2h

1p, 0n and 0pi: enhanced QE

• 2p, 0n and 0pi: enhanced 2p2h

Other checks: hadron production

» Average multiplicity per neutrino interaction and the average kinetic energy of hadrons in NuMu-CC interactions

GiBUU Implementation for SBND

Neutrino Energy

Distributions for the neutrino **>>** energy per current and neutrino type

GiBUU Implementation for SBND

Interaction vertex distributions

Transverse view

GiBUU Implementation for SBND

Interaction vertex distributions

Longitudinal view

GiBUU Implementation for SBND

Leo Aliaga

Plan for uncertainties

GiBUU Implementation for SBND

Principle

» Split the SBND sample into 2 regions in the de ICARUS' projection (sample A) and an externa

GiBUU Implementation for SBND

etector al ring	r: one circle of g (sample B) .		
	0.34 ⁰	Sample A	
SBND		Sample B	ICARUS

Principle

Split the SBND sample into 2 regions in the detector: one circle of **>> ICARUS' projection (sample A)** and an **external ring (sample B)**.

- Use **sample A** for the oscillation fit (need study stats. limitations on topology $\rangle\rangle$ sampling). Likely cancellation of flux uncertainties (residual uncertainties expected)
- Uncertainties will come from two sources: \rightarrow

>> enhancing the sensitivity to the parameters we want.

GiBUU Implementation for SBND

0.34 ⁰	Sample A	
SBND	Sample B	ICARUS

External e- and hadron scattering

Neutrino scattering in sample B

Event selections in sample B will be done with our own detector efficiencies, signal definitions, and

Principle

Pros

- » it can provide a robust model extrapolation and let us target desired sample for oscillation and error estimation.
- » Beam uncertainties when comparing sample A and B should be small, so we expect better error precision
- » Will reduce to its minimum flux uncertainties in the osc measurement.

Outgoing studies on selection efficiency, statistics, etc. Final answer till we look at the data.

Conclusions

- coming from simulations.
 - GiBUU has shown good agreement with neutrino-nucleus data, even in Ar.
- We have implemented GiBUU as an alternative generator, event by event, in LarSoft. **>>**
 - This includes the propagation through the full chain till the analysis stage.
- » We are focused to incorporate realistic systematics coming from our own neutrino-Ar data.
 - We are collaborating with Ulrich Mosel and Kai Gallmeinster (GiBUU authors) to be loyal to the physics.
 - experience of Costas Andreopoulos and Marco Roda.

» Having an alternative generator has the advantage of an independent account for all corrections

• We are exploring using GENIE-Reweight to propagate systematics. We are learning from the

Backup

GiBUU Implementation for SBND

GiBUU interaction modes

GiBUU modes:

- 1: nucleon (QE)
- 2-31: non-strange baryon resonance
- 32: pi neutron-background (e.g. $v + n \rightarrow \mu + \pi^+ + n$)
- 33: pi proton-background (e.g. $v + n \rightarrow \mu + \pi^0 + p$)
- 34: DIS
- 35: 2p2h QE
- 36: 2p2h Delta
- 37: two pion background

Link here

GiBUU Implementation for SBND

Comparison to GENIE

Neutrino energy for muon- and electron-neutrinos

GiBUU Implementation for SBND

