
NuHepMC: A proposed common event format for neutrino event generators

Steven Gardiner, Joshua Isaacson, Luke Pickering

16 March 2023



● Identified in previous workshops as valuable to the community

● Flux/geometry APIs
○ LArSoft: MCTruth (particle 4-momenta) + GTruth (extra GENIE items)
○ On the right track, but part of a big framework and missing some flexibility

● Data comparison tools
○ NUISANCE: generator inputs converted to internal FitEvent format
○ Lots of work to maintain, not used elsewhere
○ Normalizing histograms as cross sections can be tricky

● Interoperability (requires coordination beyond just a standard format)
○ Apply an FSI cascade on top of primary interactions generated elsewhere
○ Inject arbitrary new events (see talks by Marco, Leo, Alexis)

Applications for a common event format

2



● Widely used in other areas of high-energy physics
○ Paper: Comput. Phys. Commun. 260 (2021) 107310, 
○ C++ implementation: https://gitlab.cern.ch/hepmc/HepMC3

● Several key concepts are used to represent generator output

● Run Information is common to a set of related events 
○ Configuration metadata, etc.
○ Known at start of job

● Events consist of a group of Particles and Vertices

● Particles hold a 4-momentum, PDG code, and status code

The HepMC3 standard (1)

3

https://www.sciencedirect.com/science/article/pii/S0010465520301181?
https://gitlab.cern.ch/hepmc/HepMC3


● Vertices connect sets of incoming and outgoing particles
○ Hold a 4-position and a status code
○ Encode mother/daughter relationships (must have coincident 4-positions!)

● Attributes can be attached to any of the previous objects
○ Each is a named entity with an arbitrary data type
○ Strings, integers, and floating-point numbers (and vectors of these) are officially 

supported

● C++ library includes classes for file input/output
○ Several formats available, including HepMC3's native text format

The HepMC3 standard (2)

4



● Joint effort between the authors of this talk

● Define common standards for representing neutrino scattering events using 
the HepMC3 format

● Seeking to answer various questions. Some examples:
○ How can the generator configuration be stored to make a run as reproducible as 

possible?
○ How should interaction mode labels be handled?
○ What units should be used to represent 4-positions, 4-momenta, etc.?
○ What metadata should be included to allow events to be converted into cross 

sections?

● Community feedback and generator buy-in will be critical

NuHepMC (1)

5



● Near-final draft of a specification document
○ https://github.com/NuHepMC/Spec
○ To appear soon as a technical paper draft on arxiv
○ We will solicit this community for comments and sign-on
○ Then go for publication with expanded authorlist
○ Let's do this right, and make it a community standard

● Highlights will be shown on the next few slides
○ Discussion on all details is welcome

● Work on NuHepMC-compliant interfaces is also ongoing
○ Apply practical lessons learned to refining the specification

● Description of a first-pass GENIE interface later in the talk

NuHepMC (2)

6

https://github.com/NuHepMC/Spec


● Define standards for 4 components of the HepMC3 output:
○ Generator run metadata
○ Event metadata
○ Vertices
○ Particles

● The standards are grouped into 3 categories:
○ Requirements (mandatory)
○ Conventions (optional but encouraged)
○ Suggestions (optional)

● Each standard is labeled by <Component>.<Category>.<Index>
○ Component ∈ { G, E, V, P }, Category ∈ { R, C, S }
○ Example: V.C.2 is the second convention for vertices

Structure of the specification

7



Application of these labels

8



Application of these labels

9



Standards for representation of interaction modes

10

● E.R.2: Each event must define an integer 
attribute ("ProcID") that represents the type of 
physics process that created it

● G.R.4: The run information must include
○ A list of all integers that may appear as ProcID 

values
○ A map that connects each integer value to a 

name and short description

● E.C.1: Defines a scheme for high-level 
organization of ProcID values
○ Note: no EM channels included yet



Particle status codes

11

● P.R.1: Existing standards for HepMC3 
should be followed (see table)

● We extend them to assign 11 == target 
particle (usually a nucleus)

● G.R.6: All generator-dependent particle 
status codes must be defined in the run 
information

● Definition storage similar to ProcID values



Cross-section information

12

● E.C.5: Cross section values should be stored in picobarns

● E.C.2: Event attribute ("TotXS") stores total cross section for the beam particle 
to interact

● E.C.3: Event attribute ("ProcXS") stores the total cross section for the selected 
ProcID

● G.C.4: Store the flux-averaged total cross section in the run metadata (if 
known at start)
○ Straightforward for simple cases (monoenergetic, flux histogram and point target)

● E.C.4: Store running MC estimate (and statistical uncertainty) of flux-averaged 
total cross section in each event
○ Likely necessary for complex fluxes and/or geometries



Draft GENIE interface (1)

13

● Unofficial test branch for now, but briefly 
discussed with other authors
○ Blame Steven G for whatever you don't like

● Adds HepMC3 library as an optional 
GENIE build dependency
○ ./configure --enable-hepmc3
○ Similar to interface with external codes 

(INCL++, Geant4) for new FSIs in v3.2.0

● genie::HepMC3Converter
○ Bi-directional translations between genie::EventRecord objects and 

NuHepMC-compliant HepMC3::GenEvent objects
○ Extra GENIE event record contents stored as attributes ("GENIE.ZZZ")



Draft GENIE interface (2)

14

● Output in HepMC3 text-based format provided by genie::HepMC3NtpWriter

● Refactored gevgen command-line program
○ gevgen -o my_ghep_events.root,ghep,my_hepmc3_events.txt,hepmc will write 

equivalent output files in both formats simultaneously

● Running estimate of flux-averaged total 
cross section included in output (E.C.4)

● Encountered a few surprises

● Example: Some mother/daughter pairs 
do not have the same 4-position. 
Considering adjustments to GENIE 
conventions.



Draft GENIE interface (3)

15

● Test branch named hepmc3 available on Steven G's personal GitHub fork

○ https://github.com/sjgardiner/Generator/tree/hepmc3

○ Feedback welcome

● Includes citations for active cross-section models in the run information

○ GENIE configuration XMLs edited to include Digital Object Identifiers for papers

○ This information is harvested by genie::HepMC3Converter at runtime

● Further work anticipated, so all implementation details are subject to change

https://github.com/sjgardiner/Generator/tree/hepmc3


• Validated against NuHepMC 
Validator 
(https://github.com/NuHepMC/Refer
enceImplementation)

• Many parts still hard coded since 
there is only one QE model 
implemented

• Still in a private branch, will be made 
public soon in Achilles repo

Achilles Draft Interface

16

https://github.com/NuHepMC/ReferenceImplementation
https://github.com/NuHepMC/ReferenceImplementation


Conclusion

17

● We propose the NuHepMC standard as a common format for the neutrino 
generator community

○ Builds upon mature HepMC3 format used elsewhere

○ Provides guidance on representation of physics specific to neutrinos

● Work on the specification and generator interfaces continues

○ Discussion with you here and elsewhere will be very valuable going forward

○ Specification draft on GitHub: https://github.com/NuHepMC/Spec

https://github.com/NuHepMC/Spec

