#### Fermilab Department of Science



#### **Theory Systematics**

**Michael Wagman** 

Workshop on Neutrino Event Generators March 16, 2023

## Why care about theory systematics?

- Discovering new BSM physics comes from finding discrepancies between experimental results and Standard Model predictions
- Agreement between different theory calculations is necessary but not sufficient for accurate theory predictions



# Why care about theory systematics?

- Discovering new BSM physics comes from finding discrepancies between experimental results and Standard Model predictions
- Agreement between different theory calculations is necessary but not sufficient for accurate theory predictions



Consider a nightmare about muon g-2:

- 1) Suppose the true Standard Model value of g-2 signals no new physics
- 2) Suppose lattice QCD didn't reach BMWc 2020's precision until the 2030s



We might discover BSM physics and have to un-discover it 10+ years later...



#### Why care about theory systematics?

Size of theory systematic uncertainties can make the difference between whether or not we think we've discovered new physics

#### What if R-ratio methods have underestimated theory systematics?



#### What if BMWc's calculation has underestimated systematics



#### What are theory systematics?

All the differences between theorists' calculations and the real world

- Functional form of the model (~0 for lattice QCD, significant for nuclear EFTs)
- Incomplete knowledge of input parameters
- Approximations used within calculations (non-zero lattice spacing...)

|                        |  |                                    | $a_{\mu}^{ m strange}(L_{ m ref},T_{ m ref})$ |        | $a_{\mu}^{ m light}(L_{ m ref},T_{ m ref})$ |        | $a_{\mu}^{ m disc}(L_{ m ref},T_{ m ref})$ |        |
|------------------------|--|------------------------------------|-----------------------------------------------|--------|---------------------------------------------|--------|--------------------------------------------|--------|
|                        |  | median                             | 53.379                                        |        | 639.3                                       |        | -18.61                                     |        |
|                        |  | total error                        | 111                                           | (0.2%) | 4.6                                         | (0.7%) | 1.56                                       | (8.3%) |
|                        |  | statistical error                  | 89                                            |        | 2.0                                         |        | 1.03                                       |        |
| Approximations         |  | systematic error                   | 67                                            |        | 1.9                                         |        | 1.11                                       |        |
|                        |  | difference to NNLO improvement     | _                                             |        | 3.7                                         |        | 0.36                                       |        |
|                        |  | $M_{\pi}/M_K/M_{ss}$ fit           | 5                                             |        | <0.1                                        |        | < 0.01                                     |        |
| Input parameter tuning |  | $M_{\pi}/M_K/M_{ss}$ fit QED       | 3                                             |        | 0.1                                         |        | < 0.01                                     |        |
|                        |  | $M_\Omega$ fit                     | 56                                            |        | 0.3                                         |        | 0.04                                       |        |
|                        |  | $M_{\Omega}$ fit QED               | 2                                             |        | 0.1                                         |        | < 0.01                                     |        |
| Approximations         |  | $M_{\Omega}$ experimental          | 5                                             |        | 0.1                                         |        | 0.01                                       |        |
|                        |  | Continuum limit (beta cuts)        | 47                                            |        | 0.3                                         |        | 0.68                                       |        |
|                        |  | $a^2 \alpha_s^n$ with $n=0$ or $3$ | _                                             |        | 1.1                                         |        | 0.57                                       |        |
|                        |  | taste improvement ranges           | _                                             |        | 0.7                                         |        | 0.11                                       |        |
|                        |  | $t_c$ in Table 11                  | –                                             |        | 0.2                                         |        | 0.23                                       |        |

## **Determining theory systematics**

- 1) Perform additional (less precise) calculations to estimate the size of effects not included in primary calculation
  - Finite-volume effects can be approximately calculated in chiral EFT, even for quantities where we need lattice QCD for short-distance physics

- 2) Fit a model of systematic effect to data and subtract the best-fit
  - Not choosing an overlyconstrained model is essential for accurately estimating uncertainties
  - Variation between results using different models provides an (incomplete!) estimate of residual systematic uncertainties



#### What are theory systematics?

All the differences between theorists' calculations and the real world

- Functional form of the model (~0 for lattice QCD, significant for nuclear EFTs)
- Incomplete knowledge of input parameters
- Approximations used within calculations (non-zero lattice spacing...)

Defining a perturbatively renormalizable EFT for even low-energy nuclear physics remains an unsolved problem Kaplan, Savage, and Wise, Nucl. Phys. B478 (1996);

Fleming, Stewart, Mehen, Nucl.Phys.A 677 (2000);

Nogga, Timmermans, and van Kolck, PRC 72 (2005);

Reviews: van Kolck, Front. in Phys. 8 (2020)

Epelbaum, Krebs, and Reiner, arXiv:2206.07072

tl;dr nuclear physics is hard

Even so, regularized EFTs and phenomenological nuclear models can do a very good job of describing low- and medium-energy nuclear phenomena

 It's essential to study systematic uncertainties arising from our imprecise knowledge of nucleon-level effective Hamiltonians

See Noemi's half of the talk up next!

$$H = \sum_{i} K_{i} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$
Nucleon kinetic NN potential 3N potential energy

#### **Model selection**

Modeling systematics is an art, but model selection is math

 Polynomial expansions are just as expressive as neural nets in the limit of an infinite number of parameters — the (important!) differences are convergence rate for a given problem and generalizing from fit to prediction

Weierstrass, *Akademie der Wissenschaften zu Berlin*, (1885) Cybenko, Mathematics of Control, Signals, and Systems, (1989)

 Once you have specified a family of parametric models, information criteria like the AIC provide quantity metrics for choosing the "best" number of parameters

Example: form factor z expanion Free parameters  $F_A(Q^2) = \sum_{k=0}^{\infty} a_k z (Q^2)^k$ 

Infinite series must be truncated at  $k = k_{max}$  to provide a practical fit function

• How to choose  $k_{\max}$ ? Minimize AIC (plus overfitting penalties, priors, ...)

See e.g. Jay and Neill, PRD 23 (2021)

$$AIC(k_{max}) = \chi^2(k_{max}) + 2(k_{max} + 1)$$

Only include extra fit parameters if they provide "enough" improvement to  $~\chi^2$ 

# Tuning

Discrepancies between generators and data often corrected by tuning an empirical model of the least well known mechanism: MEC ("meson exchange"/two-body currents)



Coyle, Li, and Machado, JHEP 12, 166 (2022)

- Sufficiently expressive MEC models can capture difference between theory and data for a given flux-averaged x-sec
- Tuning to reproduce one process does not mean other processes/energies will be accurately predicted, as nicely evidenced by  $e4\nu$  results

Mid-modeling can distort signals of new physics, potentially biasing measurement of new physics parameters

Coyle, Li, and Machado, JHEP 12, 166 (2022)



#### Getting to "Known Unknowns"

The first steps towards getting few-% cross-section uncertainties are understanding what input parameters we will need and what precision we will need them at.

- There is no EFT that coverages over all of DUNE kinematics
- We need data-driven nuclear models exploiting the generic hierarchy N-nucleon effects >> (N+1)-nucleon effects
- We need several few-nucleon observables (at ...% precision) as inputs to anchor these models in experimental data + Standard Model theory



## **Quantifying form factor uncertainties**

z expansion — model independent parameterization of axial (and other) form factors that only assumes basic field theory / QCD properties

Hill, eConf C060409, 027 (2006)

Hill and Paz, PRD 82 (2010)

Bhattacharya, Hill, and Paz, PRD 84 (2011)

$$F_A(Q^2) = \sum_{k=0}^{\infty} a_k \, z(Q^2)^k$$
  
Free parameters  
$$F_{ree parameters}$$
  
$$K_{nown function} |z(Q^2)| < 1$$

We should also be using this to describe resonant and nonresonant pion production form factors

Can be used to quantify relations between nucleon axial form factor uncertainties and neutrino-nucleus cross section uncertainties

$$\delta\sigma = \sum_{k} \frac{\partial\sigma}{\partial a_k} \delta a_k + \dots$$

Simons, Steinberg, MW et al, arXiv:2210.02455

Straightforward to determine from calculations with varying  $a_k$ 

#### **Axial FF uncertainty needs**

Uncertainty relations calculated for MiniBooNE cross sections



Achieving 1% cross-section precision for MiniBooNE kinematics requires:

- ~ 1% precision in  $a_0$
- ~ 10% precision in  $a_1$
- Relatively little knowledge of  $a_2, \ldots$

DUNE will be more sensitive to higher coefficients, further dedicated studies needed 12

LQCD target

#### **Resonance uncertainty needs**

Similar uncertainties quantification can be studied for other cross-section pieces

The largest contributions to two-body currents arise from resonant  $N \to \Delta$  transitions in conjunction with pion exchange



The normalization of the dominant  $N \to \Delta$  transition form factor must be known to 3% precision to achieve 1% cross-section precision for MiniBooNE kinematics



State-of-the-art determinations of this form factor from experimental data on pion electroproduction achieve 10-15% precision (under some assumptions)

Hernandez et al, PRD 81 (2010)

Further constraints on  $N \to \Delta$ transitions and two-body currents will be necessary to achieve few-percent cross-section precision

#### $N\pi$ systems in LQCD

 $N\pi$  and  $\Delta$  systems can be explicitly studied in LQCD



 $N \to \Delta \,$  transition form factors can also be calculated with variational methods

Barca, Bali, and Collins, *PoS* LATTICE 2021 (2022)

Fully mapping out spectrum through the  $\Delta$  resonance region will be challenging

Work in progress with Anthony Grebe



14

## Takeaways (part 1)

Getting to few-% cross-section uncertainties will require

- Nuclear models with a limited number of parameters that can ideally be constrained using other data (e.g. few-nucleon potentials and currents, nuclear PDFs) implemented in event generators
- Relations between x-sec uncertainties and input parameter uncertainties providing precision goals for "known unknowns"
- Additional constraints on few-nucleon inputs from experiment and lattice QCD



