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|[CARUS Experiment
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ICARUS and SBN at Fermilab

*"|CARUS is the Far Detector in the Short-Baseline Neutrino (SBN) program

*SBN program physics: B
= e\/-scale sterile neutrino search X
= GeV-scale neutrino cross section measurements

=Single Detector BSM physics searches
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Neutrino Images in I[CARUS

Electron neutrino Muon neutrino
Candidate Candidate

NuMI Data Neutrino images at ICARUS BNB Data

https://news.fnal.gov/2021/05/icarus-gets-ready-to-fly

= |CARUS is now taking neutrino beam data

Image from one TPC inside each cryostat
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|CARUS Detector Operation
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Two Neutrino Beams: NuMI and BNB
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Schematic View: Phys. Rev. D 100, 115039
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Searches for New Physics at ICARUS

* A few single-detector searches are being developed at ICARUS, focused on the

NuMI beam
FinalState | Sensitive Physics
AT |
= Scalar Portal / Dark Higgs,
QCD axion, others
KDAR eTe~
Forward e Vector Portal / Dark Photon DM

* We are developing techniques to identify these events and select for them
against the neutrino background

Scalar Portal theory-based sensitivity estimate: Phys. Rev. D 100, 115039
QCD Axion theory-based sensitivity estimate: JHEP 02 (2023) 111
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Event Timing is Useful to Select BSM Events

Detector
Coordinates

BNB

%ul\/llv

* The FNAL v beams (BNB and NuMI) split each beam spill in a series
of bunches

* |ICARUS (and SBND) should be able to attain the PMT timing
resolution necessary to resolve these

Spacing: 18.9ns X ¢ FWHM: ~2 ns X ¢
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Event Timing is Useful to Select BSM Events

Detector
Coordinates

14 14

BNB

v S v
v ICARUS Cryostat X‘ .

Vv S Z

VvV
S v S

Spacing: 19 ns X ¢ Width: 2 ns X ¢

* The FNAL v beams (BNB and NuMI) split each beam spill in a series
of bunches

* Massive BSM particles would arrive in the detector in-between the
neutrino spill (in its spatial-temporal interaction point)
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Event Timing is Useful to Select BSM Events

Detector
Coordinates

S
BNB x‘
%ul\/llv

* The FNAL v beams (BNB and NuMI) split each beam spill in a series
of bunches

Spacing: 19 ns X ¢ Width: 2 ns X ¢

* Massive BSM particles would arrive in the detector in-between the
neutrino spill (in its spatial-temporal interaction point)

* With a tail of events past the end of the neutrino spill
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Fvent Generation
Tooling: MeVPrtl
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Generation Tools at ICARUS: MeVPrtl

* Getting events from new physics models into detector MC is a necessary step
in analysis

e Generation tools should:

* Generate on command * Re-use existing code where possible
* Make unweighted events * Simulate detailed effects like timing
Detector Monte-Carlo Generation Stages
MeVPrtil 8 A
fills this roIe.\* Event Detector :
. : Geant - - Reconstruction

It is implemented Generation Response
in LArSoft. _ )

* Solution we have on ICARUS and SBND to support a few analyses: MeVPrtl

generator
* https://github.com/SBNSoftware/sbncode/tree/develop/sbncode/EventGenerator/MeVPrtl
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MeVPrtl: Modular Event Generation

Example Implementations

NuMIKaonGen / BNBKaonGen / NuMIEtaGen

MeVPrtIFlux: Decay meson [ 1 [ ] _..others Per-model

into “portal” particle
WeightedRayTrace Universal
MakeScalarDecay / MakeHNLDecay Per-model

Per-beam,
Per-particle

RayTrace: Transport particle
to detector

MeVPrtiDecay: decay back
to SM
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MeVPrtl: Event Timing

* Event timing is a promising -
handle to select for heavy 00| ‘ ﬂ 00| —
particle interactions against i e <END
the neutrino background s ot MC

3 003 0.03

* To simulate this correctly, it £ oo 002 My
is necessary to go from the & 001 001 387 GeV
proton arrival time to the o4 e wo w0 O mmﬁrﬁaﬂﬂ;uin'iu’s.a i

particle travel time Massive Heavy Neutral Leptons arrive outside Credit: Lan Nguyen, Luis
the beam bunches and past the beam spill Pelegrina Gutierrez, SBND

t,: Proton arrival time Aty meson travel time Atg: “portal” travel time

Detector
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MeVPrtl: Event Timing

. . . e o h 0_7_ I | | I I I | | |
* Event timing is a promising & SBND MC
handle to select for heavy 8 06 HNL | =ae 7| Credit:

. . . . — i
particle interactions against il 05-giviils., = - LanNguyen, Luis
the neutrino background 0.4 _| Pelegrina Gutiérrez,

—&8— Combined SBND
* To simulate this correctly, it %3 -~ Events OutideNeutin Bucke -
IS necessa ry to g0 from the 0.2— ----A:=-: Events Outside Neutrino Spill —
proton arrival time to the 0.1 [T
particle travel time oLatrabp et T T
0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 038
HNL Mass [GeV]
<: > . @ e Detector
t,: Proton arrival time Aty meson travel time Atg: “portal” travel time
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Example Models in MeVPrtl

. K {; wm :} T ’ p A b
Higgs

Portal oo

NuMI

ICARUS

absorber V's to Minnesota

— ICARUS MC
| S—putu”

target K", K

ICARUS MC
S—oete”

H e avy u N de'?ec’ror E::ﬂ : . f '_
lepton W — W

mn

target absorber — N— UT

/ ICARUS MC
KDARN = pm
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Example Models in MeVPrtl

ICARUS MC
a-—yy

Heavy QCD Axion R Cosmic

a—ptu”

(boosted)
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My Perspective on How to Progress From Here

* MeVPrtl was written to solve a specific problem for SBN — how to simulate the
response of BSM physics models in the detector

e How do we scale this?
 Make it easier for theorists to contribute new models

* Make it easier to simulate complex physics (angular correlations, busy decays,
interactions)

* There’s tooling from the collider world that lets you simulate physics from a
Lagrangian (FeynRules, UFO, Sherpa, MadGraph, ...) — we should use these, but:

* Many of these existing tools assume collider-like physics — our simulation needs are
different

* Oftentimes models operate on effective degrees of freedom (mesons, etc.) which
have complicated interactions
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Conclusion

* ICARUS is a large (~500 t) detector taking data now with the (120
GeV) NuMI beam

* This physics data will be sensitive to a variety of new physics models
* Many considerations can be taken from DUNE

e Currently we are focusing on the ete ™, forward e, and u*tu~
channels for new physics

* These analyses are enabled by the “MeVPrt|” event generation tool
* Looking ahead, the tool is also being used to develop SBND analyses
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Backup Slides
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he ICARUS Detector at Fermilab

~
=
N

Cryostat before overburden, CRT
installation

= 2 modules each with two TPCs, 1.5 m / 1 ms drift

= 3 readout wire planes, ~54k wires

= 360 8” PMTs

= Cosmic ray tagger: scintillator strips read out by SiPMs

'\\‘\\\\‘\\\
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How Can ICARUS Compete with Kaon Decay Experiments?

g | o Missing Energy Experiments: - Bsm

ﬁ . g NA62: 1.21x10%?
N - K* decays

. SM in 2016 data

NA62 Collaboration (2020) ™" Sensitivity to g = VBeam
JHEP, 2103, 058. 14 p.

Delayed Decay Experiments:

o \ NuMI: expect
Sensitivity to g = VBeam =3x10%9 K*, K, K,
decays per year

GRAY PUTNAM UNIVERSITY OF CHICAGO
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BSM Physics: Scalar / Higgs Portal

CHARM

S’,. l,m
S = DL > d A b,
K { Wm } m S .-
q 2 p '

~ - | ICARUS —
ppo']'ons ’ : SN 1987a

T
NuMI

P

KDARete, ete™ | utu
10-6 ‘ ~ This analysis
el , ) 102 107" 10°
K+/_ K el absorber VS to Minnesota ms, GeV
e N -

Estimated sensitivity from:
Phys. Rev. D 100, 115039

4
| v

target

"|In the Higgs Portal, there is a new scalar with couplings to the SM through a
small mixing with the SM Higgs

*This scalar would be produced in Kaon decay when M_<m,—m

Tt
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Scalar Portal u™u~ Analysis

I\ 1 Ms = 220MeV 1 v
| / 74 Ms = 260MeV [ Cosmic
Estimated sensitivity from: g TR /
Phys. Rev. D 100, 115039 60 - ICARUS MC
L SN 1987a E 55 = 5 ) 10_5
_— o ~1 Year Data
10002 107" . y100 ?_;,J A0 -
mg, GeV o
S
. . . . . LA
sEarly indication from simulation: 2 o0
. . . Q i
= 100% cosmic rejection e
= >99% neutrino rejection o j /_I_-—'_I_._._
. . . D 1 I 1 I 1
=~40% signal efficiency above 1GeV 0.20 0.25 0.30 0.35 0.4

Reconstructed Scalar Mass [GeV/c?]
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Scalar Portal: eTe™ Analyses

KDAR (Kaon-Decay-At-Rest) Signal:

* Distinctive mono-energetic signal of scalars
from at rest Kaons in the NuMI absorber

* Previous uB analysis
* Phys.Rev.Lett. 127 (2021) 15, 151803

* ICARUS should improve due to larger size,
possible run time

0.0010 1 —— ICARUS 5 Events Estimate (620 PaT)
A — uB 5 Events Estimate (1.93e20 PoT)

o.0008 4 * === uB 2021 Limit {1.93220 PaT)

00006 -
T

00004

00002

I}. ﬂ{l I}D 1 1 T 1 T 1
006 008 010 012 014 016 016 020

ms [GeV)

GRAY PUTNAM

KDIF (Kaon-Decay-In-Flight) Signal:

* Example event display:

ICARUS MC
S—oete”

* ML based reconstruction techniques are
being pursued to identify columnated
shower pairs

UNIVERSITY OF CHICAGO
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Vector Portal: Forward e

. e
Production of Dark Matter Beam *
Y "

5:: o’ q s 4

. Y |4 ’

7%, n L -
V <
* ~ X
XT - q
Neutral mesons decays
Bremsstrahlung + vector Direct production

meson mixing

Scattering in Detector

: g e
. . A A
Elastic scattering
off el.ec.trons isa [y i 1S, <7r0
promising low e~y
backg round Elastic NC nucleon or Inelastic NC neutral pion - D , :
: ; . eep Inelastic scattering
channel. electron scattering like scattering
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Vector Portal: Forward e

* Work ongoing to understand / mitigate
neutrino background

Preliminary sensitivity estimate
Fermionic DM y, ap=0.5, My= 3M,, POT=1.0 x 10*'

* Timing is a very promising handle (1-2 ns 10
resolution expected from PMTs) ¢\ :
* Can also apply kinematics, use techniques @& ?
from v — e scattering (such as E,0%) i “’”g Q@* //
§ Phys. Rev. D 100, 092001 53_2; ol 1 4 / ;
£ o0 T - 52 RANSTEY & P4 .
e -v:ct?‘QE « | Application of E 0% o ,//
e B S ones 0 | toselectforv —e ek St ;
; o — o scattering events in A -
2 M B, DFR #* 10 MINERVA i
3 o B —=—= ICARUS (No background) 5
z Qo 10 T o L = =
E.0” (GeV*Rad?) 107 0.01 0.1 1

M, [GeV]
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Outlook

* ICARUS is a large (~500 t) detector taking data now with
the (120 GeV) NuMI beam

* This physics data will be sensitive to a variety of new
physics models

e Currently we are focusing on the e*e ™, forward e, and
utu~ channels for new physics

* Searching for new physics in these channels requires /
spurs development of new experimental techniques

*Ex: intra-spill event timing
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Other Models Under Consideration

Axion Production Axion Decay
(meson mixing, gluon-gluon fusion) (into photon pairs, hadrons)

Heavy Neutral Lepton

574 m 279 m 584 m .
o] e SN
z=0m Distance from Target (not to scale) - .
. N etector .
Kelly, Kumar, and Liu, Phys.Rev.D 103 (2021) 9, 095002 ! -
\\\ N . :’z:,_,-’-”":-”/,
H rotons -
Heavy QCD Axion F — B
e
farget absorber

* A variety of other models are also under consideration for NuMI@ICARUS

* We often can benefit from the work done understanding the new physics
potential at DUNE
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ICARUS Oscillation Search

NEUTRINO-4 reactor signals

1.4¢
A Observed, 24p, 500keV. Dec, 2019. The [.)eri?d > 1.3 :;'_— Neutrino-4 best fit:
of oscillation = = D o 2 «in290 ~
: g : = 12F Am<=7.25eV?4 sin<20 ~0.26
1.5 Am', = 7.26,8in°'20,, = 0.38 for neutrino energy - 1E
4 4MeV is 14m g
g 1 - . % e -
‘Nw 'I"_I_‘ i E .ﬂr:. _.+__*_ .*. + . o’ Jo ..o
w 1 — O09FE] A . . . : : = = | »
= : A.P.Serebrov, et al. © = - . . ':f' _+_ . . - :
z 4 ;‘ " JETP Letters, 2 OBE ‘i i ’.,+ 1= “eer
ﬁT 1 Volume 109, g 0.7 I
Hy Issue 4, pp 213-221. 2 :
= 2 o 2 ») 06f- + ICARUS v, Disappearance (BNB)
=7.25¢V’, si =0. . 45 | anxiv: E i it
0.5 AM 7256V, sin(20)=0.38 x /DoF  17.09717  GoF 045 anv:1800.10561 > o5F- Statistical errors (3 months), 3% energy scale
Unity x /DoF  27.98/19 GoF 0.08 - p : " " : 1 , i :
r : ' . ' . : e 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.0 1.5 2.0 2.5 L/E(m/MeV)
L/E

v

* Work is ongoing to understand the sensitivity of an ICARUS-only analysis to
sterile neutrino oscillations

 Somewhat higher Am? -- motivated by Neutrino 4 / BEST anomalies
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MeVPrtl: Ray Trace Weighting

I”

* Naively weighting the (massive) “porta
singular weights in the Monte-Carlo

S
Intersection probability: p;,: = if dQ’ Meson Detector
C P am D frame: f' — 5 frame: f

Lab p [GeV]

particle to hit the detector can lead to

T4r —— Plus Lab p Solution
120 —— Minus Lab p Solution
. ” H =0. e

Pick (8, ¢) for portal partlcle om0 Pick (6", &) for “portal” particle

0al Ex = 1.63GeV
f dQ’ - J 2 4a dQ’ 49 —_d¢ds’

0iT o ow o om bm om s tal O d¢

Singularity when the meson lab Weight

No smgularlty

200
—— Plus Lab p Weight

—— Minus Lab p Weight

frame velocity is faster than the |
“portal” velocity in the meson rest =
frame

50

Lab @

0.05 0.10 0.15 0.20 0.25 0.30 0.35
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u™ u~: Rejecting the Neutrino Background

*Neutrino interactions with a pion and a muon EEESGELIAVNCSRENECATES [ E3
represent a background Higher energy -

"It is not possible to tell apart muons from pions orotons are
in LAr in all cases tracked

"Most such interactions also produce a proton
"Protons are tracked down to about 50 MeV

ICARUS MC

"Flagging charge at vertex lowers this to ~15MeV >
. T E:2.9GeV
New Algorithm: ICARUS MC v
use charge at
vertex to identify It
protons below - 100MeV
tracking threshold
~ proton
B 13 cm
Lo cm 20MeV proton
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Low Energy Proton Identification w/ Charge

Performance on ICARUS MC demonstrates a much lower proton
identification energy threshold than topological reconstruction

(Pa ndora) 50% Threshold: 14MeV
— 1.0 —— pandora Efficiency
. o 600 - Stub Efficiency
Proton identification threshold "0.8 — Combined Efficiency
applying Pandora (topological) +
Stubs (charge-based) in ICARUS " 200 -0.6 O
on BNB neutrino MC E _E
[ n -
LI 0.4
ralse positve 200) o2 = al
o [ 1 Combined Cut
0 0.0 [ | Stub Reco

0.00 0.02 0.04 0.06 0.08 0.10 [ 1 Pandora Reco
Max Proton Kinetic Energy [GeV]
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u™ u~: Rejecting the Neutrino Background

=But a few such neutrino interactions do not

ICARUS MC
produce a proton

[ Scalar

Vv

[ Cosmic
Ms = 220MeV
Bs=5-10"°

* Many of these can be rejected from scalar
kinematics

Coherent-Pionv CC:v, +Ar > p+m+Ar

o
@
N
©
=
|
S
=
>
&
=

0
0.0 05 1.0 1.5 2.0 25 3.0
Reconstructed Scalar Angle to Beam [rad]

. 9 Nucleon fermi momentum and mis-reconstruction smears
ICARUS MC . the reconstructed neutrino direction to beam.

E,: 2.7GeV
It
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