

Status of CLARA at ESB

A. Shemyakin
Work by A. Romanov, G. Stancari, S. Nagaitsev
Meeting on CLARA
2 December 2022

Content

- Status of the setup
- Measurements with the Laser Diode
 - Unresolved questions
- Discussion of plans

Status of the setup (1)

- MZI is assembled in a close-to-final configuration
 - Missing elements are on hand
 - Need to remove HeNe line, install lens for IOTA light, make the input hole, and put a tube through.

Photo of the optical box with removed lid (from the top). Later, on 16-Nov-22, a neutral filter in front of LD was installed.

12/02/2022

Status of the setup (2)

- · Critical elements are remotely controlled
 - BS2 H/V, IM1H: closed-loop picomotors
 - H/V SPAD positions: open-loop picomotors; Z : steppers
 - IM4 position: precision stage
- Remote switching (inherited from URSSE)
 - SPAD power and shutters
 - Two flippers
 - LED, camera
- Need to control remotely LD current

12/02/2022

Status of the setup (3)

- Giulio connected SPADs to electronics; the counters and calculated counting rates are reported to ACNET and archived at 15 Hz (counters) and 1 Hz (rates)
 - Page N14 INSTR <45>; description in elog:
 - https://www-bd.fnal.gov/Elog/?orEntryId=227892
- Light isolation of the box without taping the gaps is reasonably good, at least for initial experiments
 - Average SPAD1/2 counting rates with closed shutters: 74/113
 - With shutters open, LD off: 259/482
 - Max/Min rates with LD current =0.1 mA and ND filter =4:
 - 900 kHz/ 80 kHz
 - Might be still tolerable for the measurements with a single electron with gating (if SPAD counting rate ~10 kHz)

Measurements with camera (examples from 14-Nov-22)

- Two types of interference measurements
 - 1st type: Delay between MZI arms is minimized; a large angle between lights from two arms. One frame.
 - Multiple frames can be used to analyze jitter
 - 2nd type: The angle between the arms is decreased as much as possible. The sum of all pixel intensities is recorded as a function of the delay.
- Transition: by adjusting
 - BS2H mostly angle
 - IM1H mostly overlap of spots
 - IM4 position delay between arms
 - By precise stage

1st type: Fringes in space

- Optimum delay, angle 4.3 mrad, LD current = 0.04 25 mA
 - No ND filter in front of LD.
 - Delay and amplification adjusted with current.
- Analysis of intensities in a narrow rectangle, "projection"
 - (Sum over Y) vs X

Image for LD = 1 mA.

1st type: signal from arms

- Signals from two arms are not identical
 - Not exactly aligned, different sum, different shape, not smooth
- The sum of the signals recorded from each arms differs from the signal measured with two arms simultaneously
 - The delay stage is shifted by 0.1 mm to avoid interference

Comparison of projection from individual arms (left) and the sum of them with a signal with both arms open.14-Nov-22. Signals from an individual arm is recorded by blocking the other arm.

1st type: fringe analysis

- Procedure (in MathCad)
 - Fourier transform => central frequency
 - Fit cosine to each period, calculate visibility
- Visibility curve is close to Gaussian
 - Max observed 93%, but difficult to tune beyond 80%
 - Sigma of the visibility curve ("coherence length") is 10 periods

Fitting to a projection and corresponding visibility curve.14-Nov-22.

9

12/02/2022

🚰 Fermilab

2nd type: Sum of all camera pixels vs stage position

- The stage is moved by 30 nm steps with continuous recording of frame sum; finding offline steps in the data
 - Averaging over the time between steps
 - Data are smoother, can apply global fitting
 - Visibility can be affected by the background

🚰 Fermilab

12/02/2022

Example of a stage scan at LD current = 1 mA. 14 -Nov- 22.

2nd type: fitting

- Values vs delay are fitted by cos*Gauss
 - For a good fit, the period needs to be linearly increased toward larger delays by 0.6%/µm
 - Repeatable from scan to scan, including a scan in opposite direction
 - Checked the difference by direct comparison of Fourier spectra ۲ maximum separately on the left and right halves of the scan
 - No explanation or model

Measurements at different LD currents

- Measurements of both types give similar results for visibility and coherence length
- Weak dependence on LD current
 - Visibility is likely affected by background

Work with SPADs

- A neutral-density filter was installed in front of the LD
 - Optical Density = 4 or 5 (i.e. attenuation by 1.E4 or 1.E5)
- Each SPADs was moved in 3 directions to maximize the signal
 - At best focusing, the light spot size is likely about the SPAD sensor size, 0.18 mm
 - Picomotor steps are not welldefined; assuming 20 nm/step, the rms width of scans is 0.25/0.14 mm horizontal/vertical
- Kept the signals below 1 MHz
 - SPAD saturation rate >10 MHz

Scan of SPAD1 horizontal position with 1000 steps per one move. LD current = 0.1 mA; OD=4. 22-Nov-22.

12/02/2022

🚰 Fermilab

Scans of SPADs over the stage position

- Recorded SPAD signals while moving the stage
 - Typical scan: 25 nm steps x 470 "moves" = 11.75 μm total
 - 1 2 seconds between moves
 - Counters for SPADs and coincidence between them are saved in D44 at 15 Hz for offline analysis.
 - Rates are calculated over 2 sec intervals, published as ACNET parameters, and saved in D44 at 1 Hz.
 - Those are mainly for online use: MZI and SPADs positions tuning and checking during measurements
- 15 Hz data are copied from D44, rates are calculated, times when stage moves occur are identified (looking at rate jumps; time consuming), and the processed data are analyzed
 - In my case, analyzed in MathCad

Features of the recorded scans

- SPAD1 has 2%
 higher average
 value and 16%
 larger oscillation
 amplitude than
 SPAD2.
 - Numbers for 22-Nov-22 set
- Coincidence rate dips around the position of the best aligned MZI

Example of a scan of SPADs signals vs delay by the stage. Stage scan 25 nm x 470 moves x 2s . LD current = 0.1 mA; ND filter with OD=5. OD=4. D44 data to copy. Straight lines are counters, and oscillating ones are the rates. 29-Nov-22.

Fit to SPAD counting rates

• Results are similar to scans with the camera image sum

Fit of the SPAD1 scan (top) and its fitting error (bottom). 28-Nov-22. Max visibility 85%, coherence length 11 λ , the period changes in the scan at 0.6%/µm rate.

The dip (1)

- For completely uncorrelated signals, the coincidence rate should be $f_{coinc} = f_1 \cdot f_2 \cdot \tau$, where τ is coincidence window.
 - Deviation of $T_w = \frac{f_{coinc}}{f_1 \cdot f_2}$ from τ may indicate how valid is the randomness assumption
 - Deviation is 2%. No explanation yet.

Coincidence rate during the stage scan 29-Nov-22, 16:08. 15 Hz data are averaged over 6 s intervals and normalized by the largest value (red crosses). Normalization corresponds to 19.7 ns. Max SPAD1 rate is 720 kHz.

Blue line is the best fit to (const – Gaussian), with the dip amplitude of 2.3% and width of 5λ. Rms fit error is 0.8%.
 Erroriab

12/02/2022

The dip (2)

• The dip repeated in several measurements

Time of set start	14:03	14:53	15:40	16:08	F
Step time, s	1	1	2	1	C
Max coincidence 15 Hz rate	8515	104	182	3424	
Offset	0.992	0.799	0.929	0.979	
Amplitude	-0.022	-0.014	-0.032	-0.023	
Rms width, μm	1.676	0.356	2.319	1.582	
Center, µm	6.042	3.171	5.496	6.15	
Rms fit error	0.005	0.076	0.036	0.008	
		Bad fit			

Fitting of scans taken on 29-Nov-22.

 Would be very useful to understand the dip origin since it is the signature that we planned to look in the undulator measurements.

Comparison with IOTA numbers

- Expected max SPAD rate for single electron
 - 0.01 v/e/turn * 7.5 MHz = 75 kHz
- Two photon rate:
 - $(0.01)^2/2 * 7.5 \text{ MHz} = 375 \text{ Hz}$
- Maximum coincidence rate for uncorrelated photons
 - 375/2= 187 Hz

Total detection probability (not including optics)

Jonathan Jarvis' simulations: ~0.01 photon/electron/turn.

- Judging by "15:40" set at the previous slide, may resolve ~10% dip in a 16 min measurement
 - What duration is reasonable to assume?
 - Can we sum several single-electron measurements?
 - Presently, no info from the stage to ACNET for synchronization

⅔ Fermilab

Summary of unexplained observations

- The period changes over the stage scans
- SPAD1 and SPAD2 have different oscillation amplitudes
- The "calculated coincidence window" has a 2% dip at aligned MZI

- Just more experiments with the existing LD are not likely to help. Need ideas.
- Part of the problem might be that this LD is an "unknown object"
 - Sergei is ordering a new LD to compare.

Plans: to-do list before moving to IOTA

- Mechanical
 - Install a tube for the input beam
 - Focusing lens at the entrance; remove HeNe from the box
 - May benefit from a screen on a flipper at the entrance
 - For the very initial tuning of light from IOTA
 - Need to figure out how to mount the optical box and the electronics at IOTA
 - Do we need frequency and polarization filtering? Collimation?
- Electrical
 - Need a cable to the box in IOTA to feed the laser diode
- Measurements
 - Try to sum separate short low-statistics measurements?

🛠 Fermilab

12/02/2022

- New LD

Possible schedule

- A couple of shifts for more measurements
 - Unless a new idea pops up
- Assemble the final configuration (pipe, lens, flipping screen)
 - If a new laser diode arrives, install
- Repeat measurements
- Move the box to IOTA
 - End of Dec'22 or beginning of Jan'23?
- I am on vacation Dec 22 28, 2022

