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Background:  the COW experiment

A neutron interferometer in an approximately uniform
gravitational field 

Phase:  

R. Collela, A. W. Overhauser, and S. A. Werner, Phys. Rev. Lett. 34, 23 (1975) 



The equivalence principle

Gravity is a purely nonlocal phenomenon

Gravity cannot be observed in any local measurement

Implication: uniform gravitational fields are not observable



A nonlocal interferometer

-EP says that there are no local gravitational effects

-To observe gravity, need a nonlocal interferometer

-Resolvable relative acceleration between interferometer arms:



Gravity as spacetime curvature

-Tidal forces across wavefunction

Tidal phase shift:

indicates “genuine gravitational effects in quantum 
interference as opposed to a mere test of the equivalence 
principle.”  

J. Anandan, Phys. Rev. D 30, 8 (1984) 



Apparatus

1. MOT and evaporation

2. Magnetic lens

3. Lattice launch

4. Atom interferometry

5. Fluorescence imaging



Nonlocal interferometer:  implementation

P. Asenbaum et al., Phys. Rev. Lett. 118, 183602 (2017)



Observation of the tidal phase shift

P. Asenbaum et al., Phys. Rev. Lett. 118, 183602 (2017)
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Beyond the midpoint theorem

C. Overstreet et al., Am. J. Phys. 89, 324 (2021)



The Aharonov-Bohm effect 

Previous gravitational experiments:  

Aharonov-Bohm experiments:  

Gravitational Aharonov-Bohm?  J. Audretsch and C. Lämmerzahl, J. Phys. A (1983) 
M. A. Hohensee et al., Phys. Rev. Lett. (2012)

Aharonov and Bohm, Phys. Rev. (1959)



Gravitational Aharonov-Bohm effect:  ingredients

High-order potential  
R < Δx

Independent 
measurement 
of deflections

C. Overstreet, P. Asenbaum, et al., Science 375, 226 (2022)



Gravitational Aharonov-Bohm effect:  results

C. Overstreet, P. Asenbaum, et al., Science 375, 226 (2022)
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Motivation:  is gravity quantum or classical?  

The success of quantum field theory in describing all other interactions
suggests that gravity is quantum.  

Gravity is well-described in the low-energy (linearized) limit as a spin-2 
quantum field.  

BUT:  
-GR QFT is not perturbatively renormalizable.
-Our best theory of gravity (GR) is classical.
-Semiclassical gravity is mathematically well-defined.  

Problem:  no experimental input!  



Field energy principle

Classical physics:  potential energy of a particle = energy of the field 

-Also true in quantum mechanics

Field energy principle:  potential energy 
is located in the field 

C. Overstreet et al., arXiv:2209.02214 (2022)



Quantum relativity principle

Relativity principle (RP):  laws of physics take the same form in every 
coordinate system  

Quantum relativity principle (QRP):  extends RP to quantum reference 
frames

C. Overstreet et al., arXiv:2209.02214 (2022)



Implications for the nature of gravity

-Semiclassical gravitational models must reject field energy principle 
and quantum relativity principle

-Schrödinger-Newton, Oppenheim models not ruled out 

-QRP test:  effect of lower-mass particle on a higher-mass superposition  

C. Overstreet et al., arXiv:2209.02214 (2022)
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Direction 1:  how do quantum systems react to gravity?

Next steps:  beyond the Newtonian approximation (GR phase shifts)
-Nonlinearity of gravity
-Gravitation of kinetic energy
-Others?  

S. Dimopoulos et al., Phys. Rev. D 78, 042003 (2008)

What we’ve learned:  the trajectory and the action of a quantum system 
in a Newtonian gravitational field are correctly predicted by 
quantum mechanics.  

Simulation/design work could be useful here!  



Direction 2:  how do quantum systems source gravity?  

Idea:  use atoms!  The effective mass of N entangled atoms of mass m
is Nm.

State of the art:  2.5 x 104 amu (Fein 2019)

To test semiclassical gravity, need to create a high-mass superposition 
state (~1012 amu)

Goal:  > 1010 highly entangled atoms in a spatial superposition

-Note that 106 atoms with 20 dB squeezing would improve the state of 
the art!   
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