Modelling heavy neutral leptons in accelerator beamlines

Komninos-John Plows and Xianguo Lu
DUNE BSM WG meeting, 13/Dec/2022

Based on
KJP and XL, "Modelling heavy neutral leptons in accelerator beamlines", arXiv: 2211.10210

Dramatis personae

- Heavy Neutral Leptons (HNL) : nearly sterile neutrino mass eigenstates
- Mass range determined by seesaw mechanism
- $M_{\mathrm{N} 4} \geq \mathcal{O}\left(0.1-1 \mathrm{GeV} / c^{2}\right)$

Assume only 1 relevant state, N4

- Production:
- Indirect (e.g. in $0 v \beta \beta$, upscattering)
- Direct (e.g. in colliders, in particle decays)

hadrons focused by horn magnet

- Reduce model dependence of HNL descriptions
- Production/decay widths depend on specific Lagrangian but...
- Emission, propagation, arrival : determined by kinematics
- Implemented HNL

dynamic flux estimation vertex + timing information

Emission

- Pseudoscalar meson decay $P \rightarrow N_{4}+\ell(+$ pseudoscalar $D)$
- Lorentz boost from parent-rest frame into lab frame dominant factor
- For a massive neutrino

$$
\begin{gathered}
\mathcal{B}=\frac{E_{\mathrm{N} 4}}{E_{\mathrm{N} 4}^{(\mathrm{CM})}}=\frac{1}{\gamma_{P}\left(1-\beta_{P} \beta_{\mathrm{N} 4} \cos \theta_{\mathrm{det}}\right)}(1), \beta_{\mathrm{N} 4} \text { lab }- \text { frame } \\
\left(\text { cf. } \beta_{\mathrm{N} 4}=1 \text { for } \mathrm{SM}\right)
\end{gathered}
$$

- Collimation effect:

$$
\tan \theta=\frac{q_{\mathrm{N} 4} \sin \Theta}{\gamma_{P}\left(\beta_{P} E_{\mathrm{N} 4}^{(\mathrm{CM})}+q_{\mathrm{N} 4} \cos \Theta\right)}(2)
$$

(P rest)

Presence of $\beta_{N 4}$ term in (1) weakens off axis effect compared to SM

Flux shapes, using ND baseline 575m from origin @ beam angle = 5.8° downwards

OA effect weakens most close to threshold (panels b, e): heavier HNL are slower

Decay to SM

- User chooses "signal events" (= interesting channels); code inhibits the rest of the decays (but keeps track of their widths)
- Kinematically accessible channels put in pool of candidates chosen at random based on the calculated decay widths
- Daughters of chosen channel generated and added to event record
- If polarisation enabled and Dirac HNL, do a "2-to-2" polarised decay based on arXiv: 1805.06419 (valid for 2-body production and 2-body decay of HNL, not strictly correct otherwise)

parent rest frame

Decay vertex placement
Known: production vertex \mathbf{D},
HNL momentum $\boldsymbol{p}_{\mathrm{N} 4}$,
Sought: Decay vertex V such that:
V on HNL trajectory
Conditional probability

$$
\frac{\mathrm{P}\left(\ell_{u} \in\left[\ell_{E}, \ell_{V}\right]\right)}{\mathrm{P}\left(\ell_{u} \in\left[\ell_{E}, \ell_{X}\right]\right)}
$$

follows exponentially decaying distribution

$$
p\left(\ell_{u}\right)=1-\exp \left(-\frac{\ell_{u}-\ell_{E}}{\beta c \gamma \tau}\right)
$$

Solution: Map uniform $u \in$ $U(0,1)$ to CDF F of the exponential decay, and get "elapsed length"

$$
\ell_{u}=F(u) \cdot\left(\ell_{X}-\ell_{E}\right)+\ell_{E}
$$

The advantages of BeamHNL

1. Direct interface with GENIE + ghep EventRecord output
2. Easy for simulation chains!
3. Makes use of GENIE config \Rightarrow can iterate over parameter space with arbitrary precision / mixing hypotheses by editing a single file!
4. Factorised input
5. Beamline simulation can be as sophisticated or as simple as one wants
6. Detector geometry is likewise "free"
7. Additional tools apart from gevgen_hnl
8. "gevgen_pghnl" particle gun ready to use (specify original trajectory in config and fire!)
9. "gevald_hnl" validation App with 3 tests: flux prediction (gives histos of HNL spectra by parentage), decay (gives daughter spectra), geometry (gives TTree with details on entry \& exit vertices, decay vertex)

Thank you!

Comments, questions welcome :-)

Backup

$$
\text { Example: Dirac HNL, } M_{N_{4}}=200 \mathrm{MeV} / c^{2},\left|U_{e 4}\right|^{2}=\left|U_{\mu 4}\right|^{2}=10^{-7}
$$

Geometry: MINERvA inner detector (USER || NEAR)
Using NuMI beam: rotated downwards by $0.05830 \mathrm{rad}--\sin ^{-1}(0.262 / 4.447) \simeq 0.05895 \mathrm{rad}$ $t=3.44 \mathrm{~ns}:$ means $\Delta t:=t(\mathrm{HNL}$ arrival) $-t(\mathrm{SM} v$ arrival) $=3.44 \mathrm{~ns}$ (useful for timing studies) Weight $=0.09407:$ means that for this signal event, estimated 0.09407×10^{20} POT needed

Angular deviation calculation

Known: production vertex \mathbf{D}, parent momentum \boldsymbol{p}_{P}, detector centre C

Sought: angles $\zeta_{ \pm}$such that

$$
\begin{aligned}
& \left\langle\boldsymbol{p}_{\mathrm{N} 4}, \boldsymbol{p}_{\boldsymbol{P}}\right\rangle \equiv \zeta \in\left[\zeta_{-}, \zeta_{+}\right] \\
& \Leftrightarrow N_{4} \text { accepted }
\end{aligned}
$$

Solution: Estimate by constructing "sweep" $\boldsymbol{\delta}$ from point $V_{0}\left(z=z_{C}\right)$ to C and calculating intersections $V_{ \pm}$

Channel calculation

- Calculate decay widths once per run, use them to store branching ratios

$$
\text { (= map of channels }->\text { widths) }
$$

- Obtain reduced map (uninhibited channels only)
- Map uniform random $u \in U(0,1)$ to channel based on score $s_{i+1}=\Gamma_{\text {channel }} / \Gamma_{\text {tot }}+s_{i}, s_{0}=0$
E.g: at $M_{\mathrm{N} 4}=200 \mathrm{MeV} / c^{2}$ with $\left|U_{e 4}\right|^{2}=\left|U_{\mu 4}\right|^{2},\left|U_{\tau 4}\right|^{2}=0$ there are 5 available channels $\nu v v, v e e, v e \mu, \pi^{0} v, \pi e$.
Suppose user wants vee, πe.
Full map (widths in $\mathrm{GeV},\left|U_{\alpha 4}\right|^{2}=10^{-6}$):
$\{(v v v, 1.46257 \mathrm{e}-23)$, (vee, $5.22082 \mathrm{e}-24$), ($v e \mu, 1.87204 \mathrm{e}-$ 24), ($\pi^{0} v, 1.08503 \mathrm{e}-22$), ($\pi \mathrm{e}, 9.13852 \mathrm{e}-23$) \}

Reduced map:

$\{(v e e, 5.22082 e-24),(\pi e, 9.13852 e-23)\}$
Scores:
$\{($ vee, 0.054$),(\pi e, 1.0)\}$
$\Rightarrow 5.4 \%$ of simulated events are $v e e, 94.6 \% \pi e$
$N \rightarrow v \nu v$, invisible

$$
M_{N} \geq 0 \mathrm{MeV} / c^{2}
$$

Implemented HNL decay channels
$N \rightarrow v e^{ \pm} e^{\mp}$, electron-like

$$
M_{N} \geq 1.022 \mathrm{MeV} / c^{2}
$$

$N \rightarrow v e^{ \pm} \mu^{\mp}$, mixed-lepton

$$
M_{N} \geq 106.169 \mathrm{MeV} / c^{2}
$$

$N \rightarrow \pi^{0} v$, photon-like
$M_{N} \geq 134.973 \mathrm{MeV} / \mathrm{c}^{2}$
$N \rightarrow \pi^{ \pm} e^{\mp}$, single-e
$M_{N} \geq 140.081 \mathrm{MeV} / c^{2}$
$N \rightarrow v \mu^{ \pm} \mu^{\mp}$, muon-like
$M_{N} \geq 211.316 \mathrm{MeV} / c^{2}$
$N \rightarrow \pi^{ \pm} \mu^{\mp}$, single-mu
$M_{N} \geq 245.229 \mathrm{MeV} / c^{2}$
$N \rightarrow \pi^{0} \pi^{0} v, 2$ pi0i
$M_{N} \geq 269.948 \mathrm{MeV} / c^{2}$
$N \rightarrow \pi^{0} \pi^{ \pm} e^{\mp}, 2$ pie
$M_{N} \geq 275.055 \mathrm{MeV} / c^{2}$
$N \rightarrow \pi^{0} \pi^{ \pm} \mu^{\mp}, 2$ pimu
$M_{N} \geq 380.202 \mathrm{MeV} / c^{2}$

Decay length distributions + fit to expo decay

- Effective POT worked out backwards
- The "forwards-going" problem (have N POT / x years of exposure, how many signal events?) is in general ill-posed (what's the nature? mass? parameter space? Not straightforward linear scale with $\left|U_{\alpha 4}\right|^{2}$)
- Steps up to N_{C} self-contained (code works out appropriate multipliers for each of the steps)
- $N_{C} \rightarrow N_{P O T}$ step requires external input from beamline
- N_{C} is calculated over all hadrons of the event parent's species (e.g. HNL made from K^{+}, get constraint from all kaon-producing POT).
- Supply appropriate multiplier: what's $\sigma(\mathrm{POT}) / \sigma\left(\mathrm{POT} \rightarrow K^{+}\right)$?
- This can be worked out (in theory) from beamline sim

