# Modelling heavy neutral leptons in accelerator beamlines

Komninos-John Plows and Xianguo Lu DUNE BSM WG meeting, 13/Dec/2022

Based on KJP and XL, "Modelling heavy neutral leptons in accelerator beamlines", <a href="mailto:arXiv:2211.10210">arXiv:2211.10210</a>



 $\Delta m^2_{43} >> 1 \text{ eV}^2$ 

 $\Delta m^2_{32} \sim 2.5 \times 10^{-3} \text{ eV}^2$ 

 $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2$ 

### Dramatis personae

- Heavy Neutral Leptons (HNL): nearly sterile neutrino mass
  - eigenstates
  - Mass range determined by seesaw mechanism
  - $M_{\text{N4}} \ge \mathcal{O}(0.1 1 \text{ GeV}/c^2)$ Assume only 1 relevant state, N4
- Production:

WARWICK

- Indirect (e.g. in  $0\nu\beta\beta$ , upscattering)
- <u>Direct</u> (e.g. in colliders, in particle decays)



## The goal

- Reduce model dependence of HNL descriptions
  - Production/decay widths depend on specific Lagrangian but...
  - Emission, propagation, arrival: determined by <u>kinematics</u>

• Implemented HNL generator into GENIE (using widths from *EPJ* C 81 (2021) 78)





#### XML configuration file mass = M couplings = |Ue4|^2, |U\_m4|^2, |U\_t4|^2 nature = Dirac or Majorana channels = {list of uninhibited decay modes) detector = {location, rotation} GENIE event record HNL: p = (px, py, pz, E), M = M(daughters): p = (qx, qy, qz, E'), kin, accessible beamline simulation parent neutrino Vertex: $\mathbf{v} = (vx, vy, vz, \Delta t)$ parent (flat-dk2nu) \*\* in local (user) coordinates \*\* "Probability": T = (HNL lifetime) HNL (p), prod. vtx D "Weight": N = \*\* estimated N POT for this signal event / 1e+20 \*\* daughters daughters daughters (channel 2) (channel 1) (channel x) Entry (E) and ROOT Event vtx (V detector exit (X) points geometry

John Plows - HNL in beamlines

M' = M\_daughter,



Inputs are

factorized:

space)

Beamline sim

Detector geometry

Runtime options

(e.g. HNL param

### **Emission**

- Pseudoscalar meson decay  $P \to N_4 + \ell$  (+ pseudoscalar D)
  - Lorentz boost from parent-rest frame into lab frame dominant factor
  - For a massive neutrino

$$\mathcal{B} = \frac{E_{\text{N4}}}{E_{\text{N4}}^{(\text{CM})}} = \frac{1}{\gamma_P (1 - \beta_P \beta_{\text{N4}} \cos \theta_{\text{det}})} (1), \beta_{\text{N4}} \text{ lab - frame}$$

$$(\text{cf. } \beta_{\text{N4}} = 1 \text{ for SM})$$

Collimation effect:

$$\tan \theta = \frac{q_{\text{N4}} \sin \Theta}{\gamma_P \left(\beta_P E_{\text{N4}}^{(\text{CM})} + q_{\text{N4}} \cos \Theta\right)} (2)$$













Collimation function dips back down! ⇒ acceptance correction needed







Flux shapes, using ND baseline 575m from origin @ beam angle = 5.8° downwards

OA effect weakens most close to threshold (panels b, e): heavier HNL are slower

WARWICK

### Decay to SM

- User chooses "signal events" (= interesting channels); code inhibits the rest of the decays (but keeps track of their widths)
- Kinematically accessible channels put in pool of candidates chosen at random based on the calculated decay widths
- Daughters of chosen channel generated and added to event record
- If polarisation enabled and Dirac HNL, do a "2-to-2" polarised decay based on <a href="mailto:arXiv:1805.06419">arXiv: 1805.06419</a> (valid for 2-body production and 2-body decay of HNL, not strictly correct otherwise)





### Decay vertex placement

Known: production vertex  $\mathbf{D}$ , HNL momentum  $p_{\mathbf{N4}}$ ,

Sought: Decay vertex **V** such that:

**V** on HNL trajectory Conditional probability

$$\frac{P(\ell_u \in [\ell_E, \ell_V])}{P(\ell_u \in [\ell_E, \ell_X])}$$

follows exponentially decaying distribution

$$p(\ell_u) = 1 - \exp\left(-\frac{\ell_u - \ell_E}{\beta c \gamma \tau}\right)$$

Solution: Map uniform  $u \in U(0,1)$  to CDF F of the exponential decay, and get "elapsed length"

$$\ell_u = F(u) \cdot (\ell_X - \ell_E) + \ell_E$$







John Plows - HNL in beamlines

Heavier HNL arrive later because they are slower! ⇒ timing triggers possible to reduce SM background

<u>Advantage</u>: Calculation is <u>exact</u> (so up to user exactly what kind of trigger they want to use)



HNL Trigger window

HNL (365 MeV)



### The advantages of **BeamHNL**

- 1. Direct interface with GENIE + ghep EventRecord output
  - 1. Easy for simulation chains!
  - 2. Makes use of GENIE config  $\Rightarrow$  can iterate over parameter space with arbitrary precision / mixing hypotheses by editing a single file!
- 2. Factorised input
  - 1. Beamline simulation can be as sophisticated or as simple as one wants
  - 2. Detector geometry is likewise "free"
- 3. Additional tools apart from gevgen\_hnl
  - 1. "gevgen\_pghnl" particle gun ready to use (specify original trajectory in config and fire!)
  - 2. "gevald\_hnl" validation App with 3 tests: flux prediction (gives histos of HNL spectra by parentage), decay (gives daughter spectra), geometry (gives TTree with details on entry & exit vertices, decay vertex)



## Thank you!

Comments, questions welcome :-)



## Backup



## Example: Dirac HNL, $M_{N_4} = 200 \text{ MeV}/c^2$ , $|U_{e4}|^2 = |U_{\mu 4}|^2 = 10^{-7}$

```
GENIE GHEP Event Record [print level: 3]
                                                    Daughter |
Idx I
               Name | Ist |
                                   PDG |
                                          Mother |
                                                                     Px |
                                                                                         Pz |
                                                                                                    Εl
                           2000020000 |
                                                                  0.003
                                                                           -0.262
                                                                                      4.447
                                                                                                4.459
                                                                                                          0.200
                                                                                                          0.140
                                                                  0.007
                                                                           -0.182
                                                                                      3.845
                                                                                                3.852
                                                                 -0.004
                                                                           -0.081
                                                                                      0.602
                                                                                                0.608
                                                                                                          0.001
      Fin-Init:
                                                                                                0.000
                                                                  0.000
                                                                           -0.000
                                                                                      0.000
                         HNL (\mathbf{0} (x = 0.49658 m, y = -0.32563 m, z =
                                                                             7.64406 m, t =
                                                                                               3.435691e-09 s
      Vertex:
 1st set:
                                                                                                           none
 Err mask [bits:15->0] : 1111111111111111
                                               Is unphysical: NO |
                                                                       Accepted:
                                                                                   YES
                0.00000e+00 \text{ cm}^2 | \text{dsig}(\text{Ev}; \{K_s\})/\text{dK} = 0.00000e+00 \text{ cm}^2/\{K\}
                                                                                     Weight =
 sig(Ev) =
                                                                                                        0.09407
```

### Geometry: MINERvA inner detector (USER ∥ NEAR)

Using NuMI beam: rotated downwards by  $0.05830 \text{ rad} - \sin^{-1}(0.262/4.447) \approx 0.05895 \text{ rad}$   $t = 3.44 \text{ ns} : \text{means } \Delta t \coloneqq t(\text{HNL arrival}) - t(\text{SM } \nu \text{ arrival}) = 3.44 \text{ ns} \text{ (useful for timing studies)}$  Weight =  $0.09407 : \text{means that for this signal event, estimated } 0.09407 \times 10^{20} \text{ POT needed}$ 



### Angular deviation calculation



Known: production vertex  $\mathbf{D}$ , parent momentum  $p_P$ , detector centre  $\mathbf{C}$ 

Sought: angles  $\zeta_{\pm}$  such that  $\langle p_{N4}, p_P \rangle \equiv \zeta \in [\zeta_-, \zeta_+]$   $\Leftrightarrow N_4$  accepted

Solution: Estimate by constructing "sweep"  $\delta$  from point  $V_0(z=z_C)$  to C and calculating intersections  $V_\pm$ 



### Channel calculation

- Calculate decay widths once per run, use them to store branching ratios
  - (= map of channels -> widths)
- Obtain reduced map (uninhibited channels only)
- Map uniform random  $u \in U(0,1)$  to channel based on score  $s_{i+1} = \Gamma_{\text{channel}}/\Gamma_{\text{tot}} + s_i, s_0 = 0$

E.g. at  $M_{\rm N4}=200~{\rm MeV}/c^2~{\rm with}~|U_{e4}|^2=\left|U_{\mu4}\right|^2, |U_{\tau4}|^2=0$  there are 5 available channels  $\nu\nu\nu$ ,  $\nu ee$ ,  $\nu e\mu$ ,  $\pi^0\nu$ ,  $\pi e$ . Suppose user wants  $\nu ee$ ,  $\pi e$ .

Full map (widths in GeV,  $|U_{\alpha 4}|^2 = 10^{-6}$ ): { (vvv, 1.46257e-23), (vee, 5.22082e-24), (veµ, 1.87204e-24), ( $\pi^0$ v, 1.08503e-22), ( $\pi$ e, 9.13852e-23) }

### Reduced map:

 $\{ (vee, 5.22082e-24), (\pi e, 9.13852e-23) \}$ 

#### **Scores**:

 $\{ (vee, 0.054), (\pi e, 1.0) \}$ 

 $\Rightarrow$  5.4% of simulated events are *vee*, 94.6%  $\pi e$ 



 $N \rightarrow \nu e^{\pm} e^{\mp}$ , electron-like

 $M_N \ge 1.022 \text{ MeV}/c^2$ 

 $N \rightarrow \nu e^{\pm} \mu^{\mp}$ , mixed-lepton

 $M_N \ge 106.169 \text{ MeV}/c^2$ 

 $N \to \pi^0 \nu$ , photon-like

 $M_N \ge 134.973 \text{ MeV}/c^2$ 

 $N \to \pi^{\pm} e^{\mp}$ , single-e

 $M_N \ge 140.081 \,\mathrm{MeV}/c^2$ 

 $N \rightarrow \nu \mu^{\pm} \mu^{\mp}$ , muon-like

 $M_N \ge 211.316 \text{ MeV}/c^2$ 

 $N \to \pi^{\pm} \mu^{\mp}$ , single-mu

 $M_N \ge 245.229 \text{ MeV}/c^2$ 

 $N \rightarrow \pi^0 \pi^0 \nu$ , 2pi0i

 $M_N \ge 269.948 \text{ MeV}/c^2$ 

 $N \to \pi^0 \pi^{\pm} e^{\mp}$ , 2pie

 $M_N \ge 275.055 \text{ MeV}/c^2$ 

 $N \rightarrow \pi^0 \pi^{\pm} \mu^{\mp}$ , 2pimu

 $M_N \ge 380.202 \text{ MeV}/c^2$ 

## WARWICK

### John Plows - HNL in beamlines

Implemented HNL decay

Upon creation of a SimpleHNL object, the HNLBRCalculator class calculates for each channel  $c_i$  the decay width  $\Gamma_i$ 

channels

These get inserted into a std::map<HNLDecayMode\_t,</pre> double> that gets attached to the SimpleHNL (i.e. a point  $(M_{N_4}, \{|U_{\alpha 4}|^2\}, \text{ isMajorana})$  in parameter space)

The calculation happens only once for each run of gevgen\_hnl (one parameter-space point per run, loaded in via config)











John Plows - HNL in beamlines of



- Effective POT worked out backwards
  - The "forwards-going" problem (have N POT / x years of exposure, how many signal events?) is in general <u>ill-posed</u> (what's the nature? mass? parameter space? Not straightforward linear scale with  $|U_{\alpha 4}|^2$ )
- Steps up to  $N_C$  self-contained (code works out appropriate multipliers for each of the steps)
- $N_C \rightarrow N_{POT}$  step requires external input from beamline
  - $N_C$  is calculated over all hadrons of the event parent's species (e.g. HNL made from  $K^+$ , get constraint from all kaon-producing POT).
  - Supply appropriate multiplier: what's  $\sigma(POT)/\sigma(POT \to K^+)$ ?
  - This can be worked out (in theory) from beamline sim

