#### Worldwide Initiatives Toward Very Short-Baseline Oscillation Searches

Bryce Littlejohn University of Cincinnati

### New Physics: Sterile Neutrinos

 Many anomalies in ν physics can be collectively explained by existence of eV-scale sterile ν:



### New Physics: Sterile Neutrinos

 Many anomalies in v physics can be collectively explained by existence of eV-scale sterile v:



## The Reactor Antineutrino Anomaly



- Main impetus: re-calculation of reactor flux predictions
  - Flux prediction increased by 3.5%



- Other smaller corrections increase prediction:
  - New neutron lifetime measurement (+1%)
  - Proper treatment of non-equilibrium reactor isotopes (+1%)
- Near-agreement between measurements, prediction becomes 5.7% measurement deficit!
- How to double-check this deficit?

## θ<sub>13</sub> Experiments: Absolute Flux

 Upcoming absolute checks on reactor anomaly from Daya Bay and RENO (soon), Double Chooz (later)



Adapted from PhD Thesis, B. Littlejohn

- Better statistics and systematics than previous SBL exps.
  - O(1%) level uncertainty, aside from 2.7% reactor flux prediction uncertainty

## Oscillimetry: A Smoking Gun



- Need a definitive MeV-scale short-basline (SBL) test
  - Absolute reactor flux checks are nice, but not good enough
- Want experiments at sterile oscillation length: meter-scale
  - Best: see oscillations in position and energy
    - Impact of spectral shape uncertainties are minimized with multiple baselines
    - Impact of position-dependent efficiency uncertainties minimized by wide energy range
    - A very distinct signature!
- MeV experiments can we can carry out at short baselines:
  - Reactor experiments
  - Antineutrino source experiments
  - Neutrino source experiments
- This talk will explain these options, specific proposals





#### **Reactor Sterile Searches**

\* My apologies to experiments I didn't have time to mention: see backup slides!

## Sterile Searches at Reactors



- Detect reactor neutrino flux via inverse beta decay interaction
  - Highly enriched uranium reactors: << 1GW<sub>th</sub>, 20+% U-235
  - Conventional reactors: >1 GW, 4-6% U-235
- Look for deficits in rate, energy, position, or some combination



1600 -

1400-

200-

000-

800-

600-

400

200

Unoscillated



Energy (MeV)

1600-

1400-

200-

000-

800-

600-

400-

200-

Oscillated:

 $\Delta m^2 = 2.5 \text{ eV}^2$ 

 $\sin^2 2\theta_{13} = 0.15$ 

# **SBL Reactor Experimental Variables**



![](_page_8_Figure_2.jpeg)

- The following projects have necessary variables to cover large portions of 90% CL anomaly parameter space at 95% CL.
  - Too many experiments to show each sensitivity plot individually...

#### Worldwide Reactor Efforts

![](_page_9_Picture_1.jpeg)

| Location | Experiment | Reactor<br>Power (MW) | Baselines (m) | Measures<br>Oscillation Via:       | Status           |
|----------|------------|-----------------------|---------------|------------------------------------|------------------|
| USA      | SCRAAM     | 3000                  | 24            | Energy                             | Proposal         |
|          | ATR        | 110                   | 7,12          | Energy + Baseline                  | Proposal         |
|          | HFIR       | 85                    | 7-10          |                                    |                  |
|          | NIST       | 20                    | 4-13          |                                    |                  |
| France   | Nucifer    | 70                    | 7             | Rate, Energy                       | Built; Upgrading |
|          | Stereo     | 50                    | 7-9           | Energy + Baseline                  | Proposal         |
| Russia   | Neutrino-4 | 18;100                | 5-10          | Energy + Baseline                  | Proposal         |
|          | DANSS      | 3000                  | 9,12,18       | Rate, Energy at multiple positions | Construction     |
| Korea    | Hanaro-4   | 30                    | 6             | Rate, Energy                       | Prototype        |

- Segmented detector allows oscillation versus baseline analysis
- Many scintillator options: Gd-doped LS, Li-doped LS, plastic scintillators

## Worldwide Reactor Efforts: USA

![](_page_10_Figure_1.jpeg)

distance (m)

 Gaining consensus on one US-based effort

Heeger, Littlejohn, Mumm, et. al. See poster here at NNN12!

- Some sites have better available baseline: NIST
- Some sites have better thermal power: ATR
- Some site have smaller core size: HFIR
- US groups have significant experience building detectors for non-proliferation

pprox.core 1.21 m dia

Courtesy of P. Mumm

Also significant oscillation analysis experience

![](_page_10_Figure_9.jpeg)

baseline spread at 10m distance

N. Bowden, SNAC 2011, Virginia Tech

October 5, 2012

3.6-ton GdLS detector

for non-proliferation: 2012

Littlejohn

## Worldwide Reactor Efforts: France

![](_page_11_Picture_1.jpeg)

#### Nucifer

A.S. Cucoanes for Nucifer, TAUP 2011, Munich

- Measure energy spectrum distortion at one baseline
- Detector built, has taken test data in 2012
- Addressing gamma shielding and GdLS issues
- Start oscillation data-taking in 2013
- STEREO: Proposal for segmented detector at ILL

![](_page_11_Figure_9.jpeg)

![](_page_11_Picture_10.jpeg)

Littlejohn

## Worldwide Reactor Efforts: Russia

![](_page_12_Picture_1.jpeg)

• Neutrino-4

A. Serberov, et. al. arXiv:1205.2955

- Long, segmented detector, active shielding proposed
- Passive shielding built, characterized at 18 MW reactor
- Move to 100 MW reactor?

DANSS 7

V. Egorov, TAUP2011

- At 3GW Commercial reactor
- Highly segmented solid scint detector being constructed - finish in 2012?
- Propose to use lift to move detector to different baselines

![](_page_12_Picture_12.jpeg)

![](_page_12_Picture_13.jpeg)

![](_page_12_Picture_14.jpeg)

![](_page_13_Picture_0.jpeg)

#### v / $\bar{\nu}$ Source Sterile Searches

\* My apologies to experiments I didn't have time to mention: see backup slides!

## Antineutrino Sources: <sup>144</sup>Ce-<sup>144</sup>Pr

![](_page_14_Picture_1.jpeg)

- Concentrated source of long-lived <sup>144</sup>Ce beta emitter
  - <sup>144</sup>Ce is long lived, daughter <sup>144</sup>Pr short-lived, high Q-value above IBD threshhold
- Detect <sup>144</sup>Pr decays via inverse beta decay
  - Low background coincidence signature
- Detect oscillation through distortion with baseline

![](_page_14_Figure_7.jpeg)

## Neutrino Sources: <sup>51</sup>Cr

- <sup>51</sup>Cr electron capture source
  - Nearly mono-energetic 1-body decay, so oscillation doesn't drop off with distance!
- Detect via elastic scattering off electrons
  - Clean, low-threshhold detectors required
- Detect oscillation through distortion with baseline

![](_page_15_Figure_6.jpeg)

![](_page_15_Figure_7.jpeg)

![](_page_15_Figure_8.jpeg)

## Daya Bay Source Experiment

Dwyer, Heeger,

Littlejohn, Vogel

arXiv:1109.6036 [hep-ex]

![](_page_16_Picture_1.jpeg)

- 0.5 MCi <sup>144</sup>Ce source
  - 35,000 events/year
  - 35 cm tungsten shielding
- 'Easy' deployment in far hall water pool: detectors undisturbed
  - Multiple source locations to check osc behavior
- Could install after θ<sub>13</sub> measurement

![](_page_16_Figure_8.jpeg)

![](_page_16_Figure_9.jpeg)

![](_page_16_Figure_10.jpeg)

## CeLAND

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

## Borexino

![](_page_18_Picture_1.jpeg)

- 0.05 MCi <sup>144</sup>Ce source at center
  - Like CeLAND; not until after 2015
- ~10 MCi <sup>51</sup>Cr source below detector
  - Absolute rate measurement no oscillimetry
  - Must measure source activity to <1%

Possible before 2015

- Image: Non-open content of the second conte
- See Borexino Collab in Sterile Nu White Paper В Source Position A

## SNO+ Sterile

![](_page_19_Picture_1.jpeg)

- 1+ MCi <sup>51</sup>Cr source inside SNO+
  - Oscillation with baseline
  - Deployment is easy with wide SNO chimney
  - Must have high-purity Tungsten shield
- Conflicts w/ SNO+ Nd phase: 2014
  - Deploy after multi-year Nd phase?

![](_page_19_Figure_8.jpeg)

![](_page_19_Figure_9.jpeg)

#### Neutrino Sources: Sensitivity

- Ĉ
- Sensitivity to sterile neutrinos vary from experiment to experiment, but most rule out anomaly to 95% CL

![](_page_20_Figure_3.jpeg)

October 5, 2012

## Sterile Searches: Feasible Timelines

#### **\*\*NOTE\*\*** - All dates are estimates - most proposals have no funding yet!

![](_page_21_Figure_2.jpeg)

- Reactors appear to lead the way in terms of schedule
- Source experiments limited in time by competing detector uses

## Summary: Beating SBL v to Death

![](_page_22_Picture_1.jpeg)

23

- Significant new information on SBL neutrino oscillations within a few years, more after ~5 years
- Many complimentary searches:
  - Rate measurements
  - Energy spectrum distortions
  - Baseline spectrum distortions
  - Multiple source types: reactors versus nu sources versus antinu sources

#### Hopefully we can put the sterile neutrino question to rest!

![](_page_22_Figure_9.jpeg)

#### Backup

Ĉ

#### **Source Production**

![](_page_24_Picture_1.jpeg)

- Besides schedules, main barrier to realizing experiments
- <sup>51</sup>Cr: Neutron irradiation of <sup>50</sup>Cr in research reactor
  - Have been made before
  - Sites in Russia, USA are identified
- <sup>144</sup>Ce: less well-defined
  - Reprocess spent nuclear fuel
  - Reprocess neutron-irradiated actinide target
  - Reprocess <sup>99</sup>Mo/<sup>99</sup>Tc prod. waste
  - Following leads in Russia, USA and Canada

T. Lasserre, Neutrino 2012

![](_page_24_Figure_11.jpeg)

Cross section of reactor core at horizontal midplane

![](_page_24_Picture_13.jpeg)

## Other Worldwide Reactor Efforts

![](_page_25_Picture_1.jpeg)

#### • Hanaro-4

- 500L final detector
- 50L prototype in production
- Testing Li-doped scintillator
- Localized neutron capture signal

![](_page_25_Figure_7.jpeg)

#### RICOCHET

 Coherent neutrino scattering detection: not yet observed

![](_page_25_Picture_10.jpeg)

- Utilize CDMS-like detectors with very low threshholds
- First testing at MIT reactor: 5MW
- 500 kg array w/ 5MCi source has sensitivity to sterile neutrinos

![](_page_25_Figure_14.jpeg)

## Other Worldwide Reactor Efforts

![](_page_26_Picture_1.jpeg)

- SAGE 2
- See B. Cleveland, et al. in Sterile Nu White Paper
- Re-do SAGE <sup>51</sup>Cr calibration with a 2-zone detector
- 3 MCi source
- Measure relative rate differences between zones

![](_page_26_Figure_7.jpeg)

LENS Sterile

See LENS Collab. in Sterile Nu White Paper

- 10 MCi <sup>51</sup>Cr next inside LENS detector
- Time coincidence: nu capture on Indium
- Nearly background-free measurement
- 1/2000 prototype exists: MicroLENS presented at APS 2012 meeting
- Much prototyping, R&D left to do

![](_page_26_Figure_15.jpeg)

![](_page_26_Figure_16.jpeg)