Neutrino / anti-neutrino separation

with a non-magnetized detector

Joe Grange University of Florida 10/6/12

teh sign is rong

Studies in wrong-sign identification

Outline

- MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB)
- 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam
 - Future utility of these techniques

- MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB)
- 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam 3. Future utility of these techniques

Booster Neutrino Beam

Booster Neutrino Beam

Magnetic horn with reversible polarity focuses either neutrino or anti-neutrino parent mesons

("neutrino" vs "anti-neutrino" mode)

MiniBooNE Flux

MiniBooNE collaboration, Phys. Rev. D79, 072002 (2009)

A spline fit to these data brings flux uncertainty to ~9%

MiniBooNE Flux

 ~9% errors only true for "right sign" events

 Due to large proton background, pion production below
 30 mrad not reported

Another benefit of off-axis beams (Nova, T2K, etc.)

This motivates a dedicated study of v_{μ} content of the beam

MiniBooNE detector

* 6.1m radius sphere houses 800 tons of pure mineral oil.

 * 1520 Photo Multiplier Tubes uniformly dispersed in 2 regions of tank (240 veto, 1280 inner tank)

Nucl. Instr. Meth. A599, 28 (2009)

 Cherenkov detector: best at measuring lepton kinematics

* No B-field!

- MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB)
- 2. Three measurements of \mathbf{v}_{μ} flux in BNB $\overline{\mathbf{v}}_{\mu}$ beam
- Future utility of these techniques

General strategy: isolate samples sensitive to the v_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CCπ⁺)
 *** Crucial application of BooNE-measured v_μ σ's

* The level of data-simulation agreement then reflects the accuracy of the v_{μ} flux prediction

 \sim Of course, if you're just interested in subtracting the bkg wrong-signs, don't need the true σ

* Important to bin in E, as finely as possible to check v_{μ} spectrum

Different energies have different relative HARP coverage too - might expect flux accuracy to be f(E_v)

NNN 2012

- * Three <u>independent and complementary</u> measurements of the wrong-sign background:
 - 1. Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ^{-} nuclear capture)

- * Three <u>independent and complementary</u> measurements of the wrong-sign background:
 - 1. Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ^{-} nuclear capture)

First measurement of the v_{μ} content of a \overline{v}_{μ} beam using a non-magnetized detector. Phys. Rev. D81: 072005 (2011)

* Three <u>independent and complementary</u> measurements of the wrong-sign background:

1. Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content

2. Comparing predicted to observed event rates in the $CC\pi^+$ sample

 Measuring how often muon decay electrons are produced (exploits μ⁻ nuclear capture)

First measurement of the v_{μ} content of a \overline{v}_{μ} beam using a non-magnetized detector. Phys. Rev. D81: 072005 (2011) in draft

NNN 2012

* Three independent and complementary measurements of the wrong-sign background:

- Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
- 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
- Measuring how often muon decay electrons are produced (exploits μ⁻ nuclear capture)

Fitting the outgoing muon angular distribution

* Neutrino vs anti-neutrino CCQE cross sections differ exclusively by an interference term that changes sign between the two

 $\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_u^2} \left[A\left(Q^2\right) \pm B\left(Q^2\right) \left(\frac{s-u}{M^2}\right) + C\left(Q^2\right) \left(\frac{s-u}{M^2}\right)^2 \right]$

* The divergence is more pronounced at higher Q², which is strongly correlated with backward scattering muons

Fitting the outgoing muon angular distribution

* Results indicate the v_{μ} flux is over-predicted by ~30%

 Exclusive reconstructed E results: consistency indicate spectrum shape is well modeled

Model dependence

* Though the v_{μ} CCQE scattering template is known (from our measurement), the result is correlated to the (unknown) anti- v_{μ} distribution and therefore biased

 Many exp't and theory improvements recently, σ knowledge will improve and this technique could be very powerful

NNN 2012

* Three independent and complementary measurements of the wrong-sign background

- Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
- 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
- Measuring how often muon decay electrons are produced (exploits μ⁻ nuclear capture)

NNN 2012

$\nu_{\mu} + N \rightarrow \mu^{-} + \pi^{+} + N^{\dagger}$

 u_{μ}

Three observable leptons

- 1. Primary muon
- 2. Decay electron
- 3. Decay positron

 $\bar{\nu}_{\mu} + N \to \mu^+ + \pi^- + N$

 Due to nuclear π⁻ capture, the corresponding anti-neutrino interaction has only two:

- 1. Primary muon
- 2. Decay positron

NNN 2012

$CC\pi^+ v_{\mu}$ flux measurement

* Require two decay electrons after the primary muon, get a sample that is $\sim 80\% v$ -induced.

 Data/simulation ratios in bins of reconstructed energy indicate the neutrino flux is overpredicted in normalization, while the simulated spectrum looks fine

CCπ+ σ measurement: Phys. Rev. D83, 052007 (2011)

E_{v}^{Δ} (MeV)	$\mathbf{v}_{\mu} \mathbf{\Phi} \mathrm{scale}$
600 - 700	0.65 ± 0.10
700 - 800	0.79 ± 0.10
800 - 900	0.81 ± 0.10
900 - 1000	0.88 ± 0.11
1000 - 1200	0.74 ± 0.10
1200 - 2400	0.73 ± 0.15
Inclusive	0.76 ± 0.11

* Three <u>independent and complementary</u> measurements of the wrong-sign background

- Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
- 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
- Measuring how often muon decay electrons are produced (exploits μ⁻ nuclear capture)

μ⁻ capture measurement

* Due to μ^{-} nuclear capture (~8% in min. oil), fewer vinduced CC events lead to a decay electron. By adjusting the v and anti-v predictions, find a v flux factor α_{ν} and anti-v rate scale $\alpha_{\bar{\nu}}$

 $\mu \text{ only}^{\text{data}} = \left(\alpha_{\nu} \nu^{\mu \text{ only}} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu \text{ only}}\right)^{\text{MC}}$ $\mu + e^{\text{data}} = \left(\alpha_{\nu} \nu^{\mu+e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu+e}\right)^{\text{MC}}$

Predicted neutrino content in the μ+e sample, for example

μ⁻ capture measurement

* Due to μ^{-} nuclear capture (~8% in min. oil), fewer vinduced CC events lead to a decay electron. By adjusting the v and anti-v predictions, find a v flux factor α_{ν} and anti-v rate scale $\alpha_{\bar{\nu}}$

 $\mu \text{ only}^{\text{data}} = \left(\alpha_{\nu} \, \nu^{\mu \text{ only}} + \alpha_{\bar{\nu}} \, \bar{\nu}^{\mu \text{ only}} \right)^{\text{MC}}$ $\mu + e^{\text{data}} = \left(\alpha_{\nu} \, \nu^{\mu+e} + \alpha_{\bar{\nu}} \, \bar{\nu}^{\mu+e} \right)^{\text{MC}}$

lts:	Parameter	< 0.9	$\overline{E_{ u}^{QE}}$ range (GeV) ≥ 0.9	All
RY	$lpha_ u lpha_{ar u}$	$\begin{array}{c} 0.78 \pm 0.14 \\ 1.16 \pm 0.22 \end{array}$	$\begin{array}{c} 0.79 \pm 0.16 \\ 1.15 \pm 0.22 \end{array}$	$\begin{array}{c} 0.78 \pm 0.12 \\ 1.16 \pm 0.22 \end{array}$

NNN 2012

PRELIMINA

Resu

Neutrino flux measurement summary

Discrepancy with prediction appears to be in normalization only
 - flux shape is well modeled. 13% error on final measurement

Using your own σ measurements

 Most detector errors cancel by correcting anti-v mode MC for σ's observed in the v exposure

 Similar to two-detector osc experiments, but instead of 1 beam + 2 detectors, we use 2 beams + 1 detector

 Φ uncertainty dominated by v-mode Φ knowledge and stats

 Φ measurement insensitive to FSI!

- MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB)
- 2. Three measurements of \mathbf{v}_{u} flux in BNB $\overline{\mathbf{v}}_{\mathrm{u}}$ beam
 - Future utility of these techniques

Current expts

* Nova

* if run anti-v mode

 Minerva: can get powerful statistical increases, more kinematic coverage (via μ angle) if use μ's stopped in main detector

Future expts: LAr

- * LBNE: first phase will be single LAr detector on Homestake surface.
- If no B-field, μ⁻ capture technique could be very powerful in wrong-sign discrimination w/o ND
 - 8% μ⁻ capture in carbon gives enough statistical power to separate v from anti-v in energy bins, argon has ~75% Phys Rev C 35, 2212 (1987)
 - * almost event-by-event discrimination without Bfield!
- * Could use π^+ as well: CC1 π^+ exclusively vinduced, in general most π^+ due to v processes

Future expts: LAr

* ICARUS has demonstrated Michels can be reconstructed well in argon Eur Phys J C33, 233 (2004)

spectrum

Other handles

- * Fit μ lifetime to combination v + anti-v templates
 * different way of using μ capture
- * Nuclear recoil for CCQE, expect outgoing p for v_u , outgoing n for anti- v_u events. Be careful!
 - meson exchange currents predict combo. of p+n ejection in both cases (open question)
 - final state interactions
 - proton detection modeling
 - very active field in both exp't and theory we ought to be better informed soon

Summary

* Though MiniBooNE is unmagnetized, minimally model-dependent statistical techniques measure the v_{μ} content in the \overline{v}_{μ} beam to ~13% uncertainty

 This is the first demonstration of a set of techniques that could used to inform technology decisions and facilitate nextgeneration oscillation measurements

backup

μ⁻ capture measurement

- ~8% of stopped μ⁻ captures on ¹²C, but some nuclear de-excitation products (γ's,n's) can fake Michel electron
 - "regain" Michel-like event
 following ~6% of μ⁻ captures

 * v-mode data has very little wrong-sign contribution, so we can calibrate nuclear deexcitation and Michel detection models

* < 5% calibration

Strategy revisited

* General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CCπ⁺)
 * Crucial application of BooNE-measured ν_μ σ's

 $\frac{\text{Rate}^{\text{data}}}{\text{Rate}^{\text{sim}}} = \frac{\Phi^{\text{true}} \times \sigma^{\text{meas}}}{\Phi^{\text{sim}} \times \sigma^{\text{meas}}} = \frac{\Phi^{\text{true}}}{\Phi^{\text{sim}}}$

The level of data-simulation agreement then reflects the accuracy of the v_u flux prediction

How wrong signs contribute to flux

 Wrong-sign pions escape magnetic deflection and contribute to the anti-neutrino beam via low angle, high momentum production

Another benefit of off-axis beams (Nova, T2K, etc.)

This motivates a dedicated study of v_{μ} content of the beam

anti-v cross section dependence?

* The μ +e sample is ~60% anti- v_{μ} , how much model dependence enters from assumption on anti- $v_{\mu} \sigma$?

* Flux measurement negligibly sensitive to anti- $v_{\mu} \sigma$: model would have to be wrong by > 50% to see an impact on extracted $v_{\mu} \Phi$ (it's not)

 This is accomplished with 8% μ⁻ capture for carbon. Can do much better with argon at ~75%!

Strategy revisited

Ceneral strategy: isolate samples sensitive to the θ_π=45 mrad

> Takes hadro-production data, uses it to place similar constraints on the flux region not measured

on agreement then the v_{μ} flux prediction

Strategy revisited

Another way to say it: wrong-sign Φ measurements limited onlyby v-mode Φ knowledge (+ statistics)

NNN 2012

μ^{-} capture measurement

 CC events typically observe both μ+e - two reasons why we may not observe the decay electron:

1. Michel electron detection efficiency

2. μ^{-} nuclear capture (v_{μ} CC events only)

 We isolate a > 90% CC sample for both μ-only and μ+e samples

Other ICARUS details

* Michel energy resolution $11\%/\sqrt{E} + 2\%$

 * 0.6mm drift direction resolution, drift distance is ~3mm in 2μs, so probably can't measure μ lifetime well

ν_{μ} vs $\overline{\nu}_{\mu}$ rate difference

* Cross section: at MiniBooNE energies ($E_v \sim 1$ GeV), neutrino cross section ~ 3x higher than anti-neutrino

$$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A\left(Q^2\right) \pm B\left(Q^2\right) \left(\frac{s-u}{M^2}\right) + C\left(Q^2\right) \left(\frac{s-u}{M^2}\right)^2 \right]$$

Be

A CCQE model: + for v, - for \overline{v}

Flux: leading particle effect creates ~ 2x as many π + as π -

 π^{-}

Fitting the outgoing muon angular distribution

 We form a linear combination of the neutrino and anti-neutrino content to compare with CCQE data:

Scale the $\overline{
u}_{\mu}$ template by " $lpha_{\overline{
u}}$ "