X-ARAPUCA simulation dimple simulations with dichroic transmittance measured on water.

Márcio Adames Francisco Ganacim André Steklain João Luis Gonçalves

Federal University of Technology - Paraná marcioadames@utfpr.edu.br, ganacim@utfpr.edu.br steklain@utfpr.edu.br, joaolg82@gmail.com

December 13, 2022

Márcio Adames Francisco Ganacim André Steklain João

Status update

- New dichroic data measured on water (ZAOT MAY 2022 and OPTO).
- Corrected distance WLS to dichroic filters (now 6.88 mm).
- Changed SiPM thin sides to absorb all photons.

Simulation details - Single Sided

- The pTP layer absorbs and re-emits (by emission spectra) 47.5% of the photons in the direction of the dichroic filters.
- Dichroic filter transmittance of NEW ZAOT filters experimental data (fitted).
- WSL absorbance and emission spectra by experimental data.
- Refraction index L. Ar. 1.24; WLS 1.5; critical angle 56^o.
- WSL non ideality included as 1% chance that the photon "tunnels" through.
- Inner X-ARAPUCA walls 98% reflectivity (do not change wavelength).
- SiPM detection efficiency spectrum by Hamamatsu data sheet.
- Supercell 6×1 (77mm × 100mm).
- Small distance WLS SiPM: 0.1 mm (for flat dimple).
- No interactions with L. Ar. inside the X-Arapuca.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Emission / Zeroed WSL absorbance

We determined $\epsilon c = A_0/l_0$ using the experimental data A_0 (assuming $l_0 = 4$ mm) an reconstructed for any distance using Beer-Lambert Law $T = 10^{-A} = 10^{-\epsilon cl}$.

→ < ∃→</p>

SiPM detection efficiency

Data from Hamamatsu S13360 (Data sheet).

December 13, 2022

.⊒ →

5/17

OPTO measurements on Water(CARLA CATTADORI)

ZAOT MAY 2022 measurements on Water(CARLA CATTADORI)

ZAOT NOV 2022 measurements on Water(CARLA CATTADORI)

ZAOT DEZ 2022 simulation on Water(CARLA CATTADORI)

9/17

X-ARAPUCA control case (no roughness, no dimple, 48 SiPMs, 77 × 100).

Márcio Adames Francisco Ganacim André Steklain João

December 13, 2022

X-ARAPUCA control case (no roughness, no dimple, 48 SiPMs, 77 x 100). OPTO WATER 2022 filters. Pie chart.

Márcio Adames Francisco Ganacim André Steklain João	Status update	December 13, 2022	11 / 17

人口医 医静脉 医胆管 医胆管 医白垩

X-ARAPUCA control case (no roughness, no dimple, 48 SiPMs, 77 x 100). ZAOT MAY 2022 filters. Pie chart.

rcio Adames Francisco Ganacim André Steklain João	Status update	December 13, 2022	12 / 17

X-ARAPUCA control case (no roughness, no dimple, 48 SiPMs, 77 x 100). ZAOT NOV 2022 filters. Pie chart.

Márcio Adames Francisco Ganacim André Steklain João	Status update
---	---------------

December 13, 2022

13/17

X-ARAPUCA control case (no roughness, no dimple, 48 SiPMs, 77 x 100). ZAOT DEZ 2022 filters. Pie chart.

- 本間 ト イヨト イヨト

X-ARAPUCA square dimples (no roughness, 1.2mm depth, 80mm width, 48 SiPMs, 77×100).

X-ARAPUCA cylindrical dimples (no roughness, 4mm radius, 48 SiPMs, 77 \times 100).

Click the image to see the model

Efficiency table 1. X-ARAPUCA (48 SiPMs, 77 × 100).

	OPTO filters	ZAOT MAY	ZAOT NOV	ZAOT DEZ
No dimple	2.0%	2.2%	2.3%	4.4%
Square dimple	2.1%	2.4%	2.4%	4.3%
Cylindrical dimple	2.2%	2.5%	2.6%	4.8%

э