Control systems for atomic quantum computers

Jeff Thompson, Princeton University QICK Workshop, 1/12/23

Neutral atoms growing rapidly!

Large scale for quantum simulation: hundreds of atoms!

Scholl et al, Nature 595 223 (2021), Ebadi et al, ibid.

Semeghini et al, Science 374 1242 (2022)

Beginning to implement circuits, error correction

Rapidly growing field: 40+ tweezer arrays started in last 2 years around the world.

Startups: ColdQuanta, Atom Computing, Quera, Pasqal, Planqc, ...

Key scaling challenge: Efficient controls

Bluvstein et al Nature 604, 451 (2022)

Graham et al Nature 604, 457 (2022)

Henriet et al, Quantum 4, 327 (2020)

Qubits encoded in atoms in *optical tweezers Dynamically reconfigurable* geometry Gates controlled by *light* Interactions using *Rydberg states*

Atomic QC = RF-controlled lasers

Typical current architecture

• NI timing core + AWGs, DDSs, cameras,

Typical current architecture

• NI timing core + AWGs, DDSs, cameras,

Example sequence

From Thompson lab Yb array ~Jan 2023

#	Channel	Loading (100 ms)	cMOT (5 ms)	Imaging (10 ms)	Rearrange (10 ms)	lmaging (10 ms)	EIT cooling (1 ms)	OP (10 µs)	3P0 init (10 us)	Gate sequence (variable)							Depump 3P0 (10 us)	Imaging (10 ms)	Depump 3P0 (10 us)	lmaging (10 ms)	
1	399 MOT										_										
2	556 MOT																				
3	556 Imaging		•																		
4	Tweezer moving																				
5	Tweezer modulation	l						ѫ													
6	556 OP																				
7	556 Init																				
8	1539 Init																				
9	770 repump		Compl	ex pul	ses 👡																
10	RF																				
11	302 UV																				
12	369 AI																				
13	399 readout																				
14	1983 repump																				
15	649 depump																				
				-							-			-				-			

+ 10-12 PID loops running continuously in parallel

In near future, mid-circuit measurement and continuous array reloading will need conditional execution and branching

Comparison to superconducting qubit control

Similarities

- Mostly RF/MW control
- Need for complex pulses, tight multi-channel synchronization

Differences

- Channel count ~independent of # qubits (high starting cost, good scaling)
- Lasers are noisy oscillators -> PID on everything!
- Need some I/O with other devices: cameras, SLM/DMD, etc.
- QEC latency ~ms instead of ~µs

QICK-AMO Architecture Vision

QICK-AMO Architecture Vision

Laser pulse stabilization with QICK

- Generate 350 MHz RF pulse with complex waveform -> AOM
- Use photodiode to capture pulse envelope, read with ADC to integrate pulse area
- Stabilize consecutive pulses to a target amplitude

RF SoC (ZCU216)

Slide: Sebastian Horvath Thanks to Sara Sussman + QICK team for support!

Optical layout

Stabilization Routine

• Discrete time PID in tProc assembly

```
OOP_I: regwi 0, $31, 17;
                                                //out = 0b00000000000000000
        seti 7, 0, $31, 150;
                                               //ch =0 out = $31 @t = 0
        seti 7, 0, $0, 160;
                                              //ch =0 out = 0 @t = 0
        regwi 0, $27, 0;
                                                1/t = 0
        set 0, 0, $22, $24, $26, $0, $0, $27; //ch = 0, pulse @t = $27
        waiti 0, 541;
        synci 17991;
        mathi 0, $3, $2 + 0;
       mathi 0, $2, $1 + 0;
        read 0, 0, lower $6;
                                               //read in phase ADC component
        read 0, 0, upper $7;
       math 0, $1, $4 - $6;
       memw 0, $6, $16;
       mathi 0, $5, $1 * -1070;
                                                //proportional
       mathi 0, $11, $2 * 90;
                                                //integral
       mathi 0, $12, $3 * -20;
                                                //derivative
       math 0, $5, $5 + $11;
       math 0, $5, $5 + $12;
        bitwi 0, $10, $10 << 10;
                                               //scale by bitshifting
       math 0, $10, $10 + $5;
                                                //compute next DAC value
        bitwi 0, $10, $10 >> 10;
        condj 0, $10, >, $9, @MINJMP;
        reqwi 0, $10, 0;
MINJMP: condj 0, $10, <, $8, @MAXJMP;
                                             //write to gain register
        regwi 0, $10, 30000;
MAXJMP: bitwi 0, $24, $10 << 16;
       memw 0, $10, $17;
        synci 35000;
        mathi 0, $17, $17 - 1;
        loopnz 0, $16, @LOOP_I;
```

Slide: Sebastian Horvath

Thanks to Sara Sussman + QICK team for support!

Stabilization Performance

- Rapidly converges to target pulse amplitude
- Negligible noise/drift from RFSoC
- Long-term stability limited by optical components used to pick off reference beam for stabilization!

Slide: Sebastian Horvath Thanks to Sara Sussman + QICK team for support!

Our experience with QICK

- Off-the-shelf hardware easy to set up
- Example notebook w/simple superconducting circuit runs easily
- Performance as expected
- Getting "under the hood" to take full advantage is less easy:
 - tProc documentation is very good
 - Software stack between tProc and Jupyter somewhat opaque
- Relatively bug free, but would benefit from more users trying to test it in different ways

QICK in the ecosystem

ARTIQ

Open-source hardware Open-source software Off-the-shelf hardware Open-source software

QICK

Quantum Machines

Closed hardware Closed software

Acknowledgements

- Thompson lab QICKer: Sebastian Horvath
- Houck lab, esp. Sara Sussman, for support and encouragement
- QICK team for new module development and discussions