Quantum Control Platforms for
Gravitational Physics in GQUEST
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Is squeezed light the
best we can do?

Shouldn’t we always be rewarded for making
a better instrument?
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University-Scale Experimentation

* Achieving quantum-noise limited sensitivity is
tough

— Acoustic isolation takes a lot of

engineering
* High Frequency signals are ideal when the
physics supports them Beam splitier
- Many efforts are center on ijy I

low-mass dark matter ~  Reference Beam Ly D
* The best experiments test a model, a theory.

Mimror |

- Ideally, either test result is significant

* New theory predicting observable signatures
of guantum gravity checks these boxes:

Li et al, arXiv:2209.07543 [gr-qc]
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https://arxiv.org/abs/2209.07543

Extreme Physics in “mundane” space
| A4 ] J

| ’ Quantum Gravity entails spacetime fluctuations
!* from entanglement entropy

- T

Quantum

* Kathryn Zurek
@ Caltech

e Systematically
bridging the divide,
theory side

E. Verlinde, KZ 1902.08207
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Prediction of interferometer response

Interferometer Response to Geontropic Fluctuations

o Fl u Ctu atl O n S Of Dongjun Li,%2:* Vincent S. H. Lee,"* " Yanbei Chen,? * and Kathryn M. Zurek!:*

! Waiter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
2 Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA

Newtonian potential on
micro/local scales =

* Looks like a field that
causes isotropic dilations
of the metric

* Thermal population

, d*p 1 — T
_ il =l o ap€P® + ale P |
e Behaves much like a ‘”/ (27)° \/zw(p)( ; g

stochastic background Tr (Ppixayp, ap,) = (27) °0pix(P1)6"” (P1 — P2)

L

g (Minimal set of equations
Lyw(p) to build the phenomenology)
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A Tabletop Stochastic Search

* Michelson Interferometer _[¥
. 10kW+ e
* 1550nm E é
* Broadband signal g ‘E'i
* Will need cryogenic Si g é
52
S¢ = ad(Q) :
Ef;zziglgggib(ﬁl)

10—18 §
10-19 _
10—2°é
10—21é

10-22 |

10° 10! 102
Readout Frequency Q/2m [MHZz]

_ 2 2 m \?(10kW S2
qm(3.10—22 o ) (i) Sq=(5.10—19 )( ) N =ATAF = —L_ ~10%3

Sm

vHz

McCuller, FNAL QICK, Jan 2023

vHz Py



A Tabletop Stochastic Search
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Blame the time-series

Here is where it gets interesting:

The background noise-power is from observing
vacuum fluctuations of the optical light

- Michelson interferometers observe the vacuum due to
their Fringe light. Which makes them measure
the optical signal field vs. time

— Is this necessary? If there is no signal power then why can |
not test observing something vs. observing nothing

- Instead, measure the optical signal power (s. time)

different observable, different statistics

McCuller, FNAL QICK, Jan 2023 LM: arXiv:2211.04016


https://arxiv.org/abs/2211.04016

A Tabletop Particle Search

So... lets view this
as a particle detector

e le-7 photons/(s Hz) emitted
(spectral flux-density)

 over 10MHz (1e7 Hz)
signal bandwidth
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o
B
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48,

Sideband emission rate
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e Should take 1second for 1o
by Poisson statistics
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o
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— Shot noise quantum limit isn’t
so fundamental for this
search
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https://arxiv.org/abs/2211.04016

The GQUEST Realization
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background noise
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https://arxiv.org/abs/2211.04016

50kHz Photopower Integration
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Sensing and Cont

* Good active and tons of
passive isolation of laser
noise

e Feedback control of
Interferometer and cavities

 Many VCO sources and
demodulators

McCuller, FNAL QICK, Jan 2023
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High Speed Servo oard

* The LIGO “Common Mode” board is a generic i
2-channel in, 2-channel out servo in analog

SQZ OPO Common Mode Board

( CoMMaN PATH )

 Implements 8 custom, toggle-able Sallen-Key
filters

- equiv, digital biquad filter (i.e. S0S)

- Much more aggressive loop shapes than
PID. Are conditionally stable!

« Offsets added at appropriate points

* Along with testpoint/excitation for loop
measurements

aaaaaa

* Demodulation, mixing done externally with low - .
noise demod boards. The schematics and design are
public - on generation 7:

* Requires ~40 binary controls and many https://dcc.ligo.org/LIGO-D040180
analog readbacks ($$, annoying for univ. labs)

Generally, we need the full dynamic range Of op-amps (~1e-10/rtHz),
which means a 16 bit ADC at 4GHz with “whitened” front-end noise shaping
McCuller, FNAL QICK, Jan 2023 13



TTFESS”

SQZ PLL
- ih i a Generic M}_)n OUT1 EXC OUT2 TTESS 4G
» Table-top frequency stabilization servo. AR Ensioto
- Actuates with laser temp, laser PZT, EOM. — R ‘ -
L 0%2733 dBn 750«"7”5“ _ ﬂ:m
— EOM path is in a short 10ns round-trip for *_—SI O H @ T S O— D—li\—
H H frr-oe0 RF Pl]nlfs F On Comnon 0 fset CowarlGalltD)
highest bandwidth. o ,;m e
- Locks two lasers to shot noise of the :I_ra% e . e . e
beatnote to 100kHz or so. T L —
H ; ; ; Fast Man QUTL  EXC OUTZ 7 X
* Ends up limited by fiber or acoustic pickup e : — e
between the lasers. s l—‘c;' \F\

- Basically makes a secondary laser
equivalent to a primary

- The VCO on the secondary allows one to
then modulate the secondary substantially
faster than an AOM for single-sideband

10/100

T30k 2.3k/23K
-\ -\ /
Fast LP1 Fast BST

[‘dl’; —12.18: ¥

Background image:LIGO-D2200253

modulation

— This is a principle of operation for the _ _
LIGO in-vacuum squeezed light source The schematics and design are
and its coherent control system. public - on generation 4:

https://dcc.ligo.org/D1700077
McCuller, FNAL QICK, Jan 2023



Cross Correlating Spectrum Analyzer

— Psp[A{L] __ |Csp[M{T, NL]| Veto
13L]  — 6L CSD stat. lim.

» Also equipped with a “standard
Michelson” readout.

Spectral Density

* Like Holometer, needs multi
channel ~100MHz time-
averaged cross correlations to
dig in to noise

1 | 1 | | E
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- Gives Resolution that
photon counting doesn’t

-
(o)

Spectral density [m /V Hz}
=
o

..........

0 1 2 3 4 5 6 7 8 9 10
Frequency [MHz|

Class. Quantum Grav. 34 (2017) 065005
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GQUEST experiment:

Gravity from Quantum Entanglement of Space-Time

* Intends to test quantum gravity fluctuation signals

10~ — Total
* Intends to demonstrate the utility of photon counting for e
interferometers e VR o oA
: : £ 10 K btrate prowmian (I
— This makes them much more like other HEP £ Substrate Thermo-Elasic
rare-process detectors 2 w077 | Broton Coppting |
* | do anticipate counting to be useful in the future of GW jm ------------ JL LU
astronomy o2} T TTERe e
..................................................... M
* Squeezing doesn’t improve quantum performance 10-22 | . | | N
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H requenc z le7
- new platform to explore non-Gaussian quantum rreaueney el
improvements

U.S. DEPARTMENT OF
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Office of Science
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The A+ Upgrade

6db of frequency-dependent squeezing

- Early install, aiming at 4.5db in Run 4
— Sub-SQL during observations!

2X improved coating thermal noise
— Still researching, but good leads

Active wavefront control

- Lowers squeezing loss

Balanced homodyne readout
— Multiple benefits

Bigger Beamsplitter

McCuller, FNAL QICK, Jan 2023
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Fl I ter CaV| ty H ar dW ar e Drawings: Wenxuan Jia and Dhruva Ganapathy

Active mode-
matching
mirror (ZM)

V. Srivastava, et al., Opt. Express 30,

Signal- g

1 o
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Ultralow-loss Faraday
isolators (UF/Montclair)
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Filter Cavity Installation
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