Quantum Control Platforms for Gravitational Physics in GQuEST

How strongly can we probe mirror displacement for gravitational physics?

Is squeezed light the best we can do?

Lee McCuller Caltech

FNAL QICK workshop

12 Jan. 2023

How small can we make classical noise?

Shouldn't we always be rewarded for making a better instrument?

GQuEST experiment:

Gravity from Quantum Entanglement of Space-Time

McCuller, FNAL QICK, Jan 2023

University-Scale Experimentation

- Achieving quantum-noise limited sensitivity is tough
 - Acoustic isolation takes a lot of engineering
- High Frequency signals are ideal when the physics supports them
 - Many efforts are center on low-mass dark matter
- The best experiments test a model, a theory.
 - Ideally, either test result is significant
- New theory predicting observable signatures of quantum gravity checks these boxes:

Li et al, arXiv:2209.07543 [gr-qc]

Extreme Physics in "mundane" space

- Kathryn Zurek
 @Caltech
- Systematically bridging the divide, theory side

McCuller, FNAL QICK, Jan 2023

Quantum Gravity entails spacetime fluctuations from entanglement entropy

Banks, KZ 2108.04806

E. Verlinde, KZ 1902.08207 E. Verlinde, KZ 1911.02018

Prediction of interferometer response

- Fluctuations of Newtonian potential on micro/local scales
- Looks like a field that causes isotropic dilations of the metric
- Thermal population
- Behaves much like a
 <u>stochastic background</u>

McCuller, FNAL QICK, Jan 2023

Interferometer Response to Geontropic Fluctuations

Dongjun Li,^{1,2,*} Vincent S. H. Lee,^{1,†} Yanbei Chen,^{2,‡} and Kathryn M. Zurek^{1,§}

¹ Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA ² Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA (Dated: September 19, 2022)

 $\operatorname{Tr}\left(\rho_{\mathrm{pix}}a_{\mathbf{p}_{1}}^{\dagger}a_{\mathbf{p}_{2}}\right) = (2\pi)^{3}\sigma_{\mathrm{pix}}(\mathbf{p}_{1})\delta^{(3)}(\mathbf{p}_{1}-\mathbf{p}_{2})$

 $\sigma_{\rm pix}(\mathbf{p}) = rac{a}{l_p \omega(\mathbf{p})} \,,$

(Minimal set of equations to build the phenomenology)

A Tabletop Stochastic Search

- Michelson Interferometer
- 10kW+
- 1550nm
- Broadband signal
- Will need cryogenic Si

 $S_{\phi} \equiv \alpha \Phi(\Omega)$

 $\Phi \equiv \max \Phi(\Omega)$ $\Omega < \infty$

McCuller, FNAL QICK, Jan 2023

A Tabletop Stochastic Search

McCuller, FNAL QICK, Jan 2023

Blame the time-series

Here is where it gets interesting:

The background noise-power is from observing vacuum fluctuations of the optical light

- Michelson interferometers observe the vacuum due to their *Fringe light*. Which makes them measure the optical signal field vs. time
- Is this necessary? If there is no signal power then why can I not test observing something vs. observing nothing
- Instead, measure the optical signal power (vs. time)

different observable, different statistics

McCuller, FNAL QICK, Jan 2023

LM: arXiv:2211.04016

A Tabletop Particle Search

So... lets view this as a particle detector

- 1e-7 photons/(s Hz) emitted (spectral flux-density)
- over 10MHz (1e7 Hz) signal bandwidth
- Should take <u>1second</u> for 1σ by Poisson statistics
 - Shot noise quantum limit isn't so fundamental for this search

arXiv:2211.04016

The GQuEST Realization

- Metric fluctuation signal modulates Stokes, anti-Stokes photon side-bands
- Use a series of optical filters to select photon sidebands
- Requires extreme sideband/carrier contrast ~240db
- New interferometer for Raman/Brillouin spectroscopy of <u>spacetime</u>

arXiv:2211.04016

50kHz Photopower Integration

McCuller, FNAL QICK, Jan 2023

arXiv:2211.04016

Sensing and Control Needs

- Good active and tons of passive isolation of laser noise
- Feedback control of interferometer and cavities
- Many VCO sources and demodulators

High Speed Servo Board

- The LIGO "Common Mode" board is a generic 2-channel in, 2-channel out servo in analog
- Implements 8 custom, toggle-able Sallen-Key filters
 - equiv, digital biquad filter (i.e. SoS)
 - Much more aggressive loop shapes than PID. Are conditionally stable!
- Offsets added at appropriate points
- Along with testpoint/excitation for loop measurements
- Demodulation, mixing done externally with low noise demod boards.
- Requires ~40 binary controls and many analog readbacks (\$\$, annoying for univ. labs)

The schematics and design are public - on generation 7: https://dcc.ligo.org/LIGO-D040180

Generally, we need the full dynamic range Of op-amps (~1e-10/rtHz), which means a 16 bit ADC at 4GHz with "whitened" front-end noise shaping

"TTFSS"

- Table-top frequency stabilization servo.
 - Actuates with laser temp, laser PZT, EOM.
 - EOM path is in a short 10ns round-trip for highest bandwidth.
 - Locks two lasers to shot noise of the beatnote to 100kHz or so.
 - Ends up limited by fiber or acoustic pickup between the lasers.
 - Basically makes a secondary laser equivalent to a primary
 - The VCO on the secondary allows one to then modulate the secondary substantially faster than an AOM for single-sideband modulation
 - This is a principle of operation for the LIGO in-vacuum squeezed light source and its <u>coherent control system</u>.

The schematics and design are public - on generation 4: https://dcc.ligo.org/D1700077

Cross Correlating Spectrum Analyzer

- Also equipped with a "standard Michelson" readout.
- Like Holometer, needs multi channel ~100MHz timeaveraged cross correlations to dig in to noise
 - Gives Resolution that photon counting doesn't

Class. Quantum Grav. 34 (2017) 065005

GQUEST experiment: Gravity from Quantum Entanglement of Space-Time

- Intends to test quantum gravity fluctuation signals
- Intends to demonstrate the utility of photon counting for interferometers
 - This makes them much more like other HEP rare-process detectors
- I do anticipate counting to be useful in the future of GW astronomy
- Squeezing doesn't improve quantum performance
 - new platform to explore non-Gaussian quantum improvements

The A+ Upgrade

- 6db of frequency-dependent squeezing
 - Early install, aiming at 4.5db in Run 4
 - Sub-SQL during observations!
- 2x improved coating thermal noise
 - Still researching, but good leads
- Active wavefront control
 - Lowers squeezing loss
- Balanced homodyne readout
 - Multiple benefits
- Bigger Beamsplitter

McCuller, FNAL QICK, Jan 2023

Reference Curves LIGO T1800042-v5

Strain ASD [1//Hz]

Filter Cavity Hardware

Drawings: Wenxuan Jia and Dhruva Ganapathy

Filter Cavity Installation

