

Superconducting Nanowire Single Photon Detectors with Low Energy Thresholds

Matt Shaw Jet Propulsion Laboratory

12 January 2023

© 2023 California Institute of Technology. All rights reserved. Government sponsorship acknowledged.

Superconducting Nanowire Single Photon Detectors

Present State of The Art in SNSPDs

UV – Mid-IR Operation

Photon counting from 0.1 - 18 µm (JPL/MIT/NIST)

High Time Resolution 2.6 ps FWHM (MIT/JPL/NIST)

Korzh et al, Nature Photonics (2020)

0.20 0.25

Low Dark Counts

6e-6 cps (MIT/NIST)

Chiles et al, Phys. Rev. Lett. (2022)

Kilopixel Array Formats

32x32 "row-column" / thermally coupled imager (NIST/JPL)

Wollman etHigh Event RateMacCaugha1.4 Gcps in 32-element array (JPL)

Wollman et al, *Optics Express* (2019) MacCaughan et al, *APL* (2022)

SNSPD Applications

Free-Space Optical Communication

- Deep Space Optical Communication (Psyche)
- Optical-to-Orion
- Lunar Laser Comm Demo
- Space-to-Ground Quantum Communication

Quantum Information Science

- Quantum
 Communication
- Trapped Ion
 Quantum Computing
- Linear Optical
 Quantum Computing

Fundamental Physics and Astronomy

- Dark Matter searches
- Tabletop tests of quantum gravity
- Exoplanet science
- Ultrafast optical transients

Motivation for Lower Energy Thresholds

<u>Astronomy</u>

- General need for sensitive, low-noise detectors in 15-30 um band for space astronomy
- Exoplanet transit spectroscopy (*Origins:* 3 25 μm)
- Nulling interferometry for exoplanet detection (*LIFE: 4* 18 μm)

Dark Matter Detection

- Low energy threshold for direct detection of infrared axions or hidden sector photons
- Measurement of scintillation from low-bandgap crystal targets, molecular scattering

Remote Sensing

- Photon counting lidar
- Passive thermal rangefinding

Quantum Information Science

- Characterization of exotic quantum emitters
- Quantum imaging and sensing

Strategies for Lower Energy Thresholds

Reduced Superconducting Gap Energy

- Now using Si-rich WSi to reduce Tc to 1.3-2.1 K (depending on thickness)
- "Conventional" WSi for NIR devices has Tc = 3.1 – 3.6 K

Narrow Nanowires

- Narrower nanowires enhance IR sensitivity by constraining hotspot growth
- Reliably fabricating SNSPDs with 50-60 nm wires
 using electron-beam lithography

NIST

lliit

JPL

Tradeoffs: Lower operating temperature (< 1 K) and smaller readout currents (< 2 uA)

Saturated Internal Efficiency up to 18 µm (70 meV)

Devices have 100% *internal* efficiency, but need to be optimized for efficient coupling at these wavelengths

NIST I'llii JPL

Scaling to 32-element Arrays in Mid-IR

First Demonstration of Low Jitter in MWIR

- Measured <30 ps FWHM jitter from 1.56 μm to 3.5 μm in an NbTiN SNSPD
- First demonstration of fast timing in an MWIR SNSPD
- Demonstrates feasiblity of time-domain multiplexing using MWIR SNSPDs
- Also demonstrates practicality for lidar and optical communication in MWIR

Jitter histograms from 2.3 μm to 3.5 $\mu m.$ Note the distortion in the 3.5 μm histogram is due to optical reflections within the source.

Work performed in collaboration with U. Glasgow

Frequency Domain Multiplexing of SNSPDs

- Current from SNSPD is shunted to a superconducting microwave resonator instead of an amplifier
- Thousands of resonators can be read out on one RF feedline
- Most bandwidth-efficient way to make use of the readout lines in the cryostat
- Exceptional (<< 1 uA) current sensitivity compared to conventional amplifiers, critical for mid-IR devices
- DC bias provides a degree of reconfigurability
- Leverages decades of development from microwave kinetic inductance detectors and superconducting qubit readouts

Preliminary results with frequency multiplexing

- Interfaced SNSPD array with KPUP chip containing 40 resonators on one feedline
- Successfully read out SNSPD pulse and demonstrated DC frequency shifting necessary for reconfigurable readout

40 microwave resonators on one feedline

Demonstration of resonator shift with DC bias

Next Steps for Longwave SNSPD Development

- Move to co-sputtered films with higher Si content to further reduce Tc
- Expect Tc ~ 0.5 0.7 K is possible with WSi, for 100 200 mK operating temperature
- Demonstrate saturated efficiency at 30 µm wavelengths
- Work on optimized coupling efficiency at long wavelengths using optical stacks and antennas
- Develop calibrated efficiency measurements at long wavelengths
- Scale up frequency-domain readout to large number of pixels

Applications for QICK for Superconducting Detectors

- Longwave Infrared SNSPDs
- Photon-Counting KIDs
- Far-infrared KIDs
- Quantum Capacitance Detectors
- Frequency Domain TES Readout