
Kyle J. Knoepfel
Monthly DUNE/LDRD meeting
14 December 2022

Adaptable framework LDRD update
https://indico.fnal.gov/event/52666/contributions/231769/attachments/153101/198580/SCDProjects_LDRD_Knoepfel.pdf

https://indico.fnal.gov/event/52666/contributions/231769/attachments/153101/198580/SCDProjects_LDRD_Knoepfel.pdf


Constructs that can be framework-agnostic:
• Transform (producer) – creates data products from existing data of the same processing level

• Reduction (producer) – creates data products based on accumulations of data at a more granular 
processing level (e.g. endSubRun)

• Monitor (analyzer) – consumes data products and does not produce any new data

• Filter – supports processing a subset of data based on satisfying Boolean criteria

Framework-supported algorithm constructs

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting2



Constructs that can be framework-agnostic:
• Transform (producer) – creates data products from existing data of the same processing level

• Reduction (producer) – creates data products based on accumulations of data at a more granular 
processing level (e.g. endSubRun)

• Monitor (analyzer) – consumes data products and does not produce any new data

• Filter – supports processing a subset of data based on satisfying Boolean criteria

Constructs that must be framework-aware:
• Source – creates product stores that provide data products

• Splitter – splits existing product stores into smaller ones for downstream processing

• Output – writes product stores to an output file, stream, etc.

Framework-supported algorithm constructs

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting3



• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting4



• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting5

constexpr int add(int i, int j) { return i + j; }



• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting6

#include "meld/module.hpp"

DEFINE_MODULE(m) // pset can also be passed in
{

m.declare_transform("add", add)
.concurrency(unlimited)
.input(”num", ”neg_num")
.output("sum");

}

constexpr int add(int i, int j) { return i + j; }



• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting7

#include "meld/module.hpp"

DEFINE_MODULE(m) // pset can also be passed in
{

m.declare_transform("add", add)
.concurrency(unlimited)
.input(”num", ”neg_num")
.output("sum");

}

constexpr int add(int i, int j) { return i + j; }

Generates graph node add



• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting8

#include "meld/module.hpp"

DEFINE_MODULE(m) // pset can also be passed in
{

m.declare_transform("add", add)
.concurrency(unlimited)
.input(”num", ”neg_num")
.output("sum");

}

constexpr int add(int i, int j) { return i + j; }

Generates graph node

neg_num

add

numConsumes:



• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting9

#include "meld/module.hpp"

DEFINE_MODULE(m) // pset can also be passed in
{

m.declare_transform("add", add)
.concurrency(unlimited)
.input(”num", ”neg_num")
.output("sum");

}

constexpr int add(int i, int j) { return i + j; }

Generates graph node

neg_num

add

num

sum

Consumes:

Produces:



• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting10

#include "meld/module.hpp"

DEFINE_MODULE(m) // pset can also be passed in
{

m.declare_transform("add", add)
.concurrency(unlimited)
.input(”num", ”neg_num")
.output("sum");

}

constexpr int add(int i, int j) { return i + j; }

Generates graph node

neg_num

add

num

sum

i j

i + j

Consumes:

Produces:



• For framework-agnostic constructs, 
framework details are not
accessed by the user within the 
node.

Graph nodes

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting11

a

A

Consumes:

Produces:

b n

M

…

…
user code



user code

aConsumes:

Provides:

b n…

• For framework-agnostic constructs, 
framework details are not
accessed by the user within the 
node.

Graph nodes

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting12

a

A

Consumes:

Produces:

b n

M

…

…

• For framework-aware constructs, 
framework details must be 
accessed by the user within the 
node.

user code



• Communication between nodes occurs via 
messages, which contain either:

(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)

Data flow

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting13

t1 t2

f1 f2

Reduction

Monitor 

Source



• Communication between nodes occurs via 
messages, which contain either:

(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)

• Product stores are shallow—the products from 
one store are not propagated to downstream 
stores.
N.B. Products are immutable once committed to the framework.

Data flow

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting14

t1 t2

f1 f2

Reduction

Monitor 

Source



• Communication between nodes occurs via 
messages, which contain either:

(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)

• Product stores are shallow—the products from 
one store are not propagated to downstream 
stores.
N.B. Products are immutable once committed to the framework.

• Each non-filter generates its own product store 
with the products produced by that node.

Data flow

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting15

t1 t2

f1 f2

Reduction

Monitor 

Source



• Communication between nodes occurs via 
messages, which contain either:

(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)

• Product stores are shallow—the products from 
one store are not propagated to downstream 
stores.
N.B. Products are immutable once committed to the framework.

• Each non-filter generates its own product store 
with the products produced by that node.

• Product stores and filter results can be cached 
to support hierarchical data processing (dots).

Data flow

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting16

t1 t2

f1 f2

Reduction

Monitor 

Source



• Communication between nodes occurs via 
messages, which contain either:

(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)

• Product stores are shallow—the products from 
one store are not propagated to downstream 
stores.
N.B. Products are immutable once committed to the framework.

• Each non-filter generates its own product store 
with the products produced by that node.

• Product stores and filter results can be cached 
to support hierarchical data processing (dots).

Data flow

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting17

t1 (run) t2 (evt)

f1 (evt) f2 (evt)

Reduction

Monitor 
(subrun)

Source



Configuration

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting18

All modules (except sources) may specify preceding filters via configuration:

{
source: { plugin: 'source_t' },
modules: {

t1: { plugin: 'transform_1' },
t2: { plugin: 'transform_2' },
f1: { plugin: 'filter_1' },
f2: { plugin: 'filter_2' },
reduction: {

plugin: 'reduction',
filtered_by: ['f1', 'f2'], # Logical AND of f1 and f2

},
monitor: { plugin: 'monitor' },

},
}

t1 (run) t2 (evt)

f1 (evt) f2 (evt)

Reduction

Monitor 
(subrun)

Source

Data product dependencies specified by glue code.



Benchmarks to test (transforms and monitors)

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting19

Source

Transform

Source

Monitor 

Source

Monitor 

Transform

Source

Monitor 

Transform 1 Transform 2

Source

Monitor 

Transform 2 Transform 3

Transform 1



Benchmarks to test (filters)

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting20

Source

Monitor 

Transform 2 Transform 3

Filter

Source

Monitor 

Filter 1 Filter 2

Transform

Source

Monitor 

Transform 2 Filter

Transform 1



Benchmarks to test (reductions)

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting21

Source

Monitor 

Reduction

Source

Monitor 

Reduction 1

Reduction 2



• Run performance tests against art (started)

Next steps

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting22

Source

Monitor 

Transform 2 Transform 3

Transform 1

1M events



• Run performance tests against art (started)

Next steps

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting23

art

Meld

Source

Monitor 

Transform 2 Transform 3

Transform 1

1M events

Preliminary



• Run performance tests against art (started)

• Look at I/O
• Explore paths and backwards compatibility
• Thoughts?

Next steps

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting24

art

Meld

Source

Monitor 

Transform 2 Transform 3

Transform 1

1M events

Preliminary


