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Constructs that can be framework-agnostic:
• Transform (producer) – creates data products from existing data of the same processing level

• Reduction (producer) – creates data products based on accumulations of data at a more granular 
processing level (e.g. endSubRun)

• Monitor (analyzer) – consumes data products and does not produce any new data

• Filter – supports processing a subset of data based on satisfying Boolean criteria

Framework-supported algorithm constructs
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Constructs that can be framework-agnostic:
• Transform (producer) – creates data products from existing data of the same processing level

• Reduction (producer) – creates data products based on accumulations of data at a more granular 
processing level (e.g. endSubRun)

• Monitor (analyzer) – consumes data products and does not produce any new data

• Filter – supports processing a subset of data based on satisfying Boolean criteria

Constructs that must be framework-aware:
• Source – creates product stores that provide data products

• Splitter – splits existing product stores into smaller ones for downstream processing

• Output – writes product stores to an output file, stream, etc.

Framework-supported algorithm constructs
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• Naturally separates user code from framework assumptions
- The input arguments for each registered function are data products produced by upstream 

functions or provided by the input source.
- The return value(s) of each registered function are registered as a data product.

Framework glue code
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constexpr int add(int i, int j) { return i + j; }
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#include "meld/module.hpp"

DEFINE_MODULE(m) // pset can also be passed in
{

m.declare_transform("add", add)
.concurrency(unlimited)
.input(”num", ”neg_num")
.output("sum");

}

constexpr int add(int i, int j) { return i + j; }
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• For framework-agnostic constructs, 
framework details are not
accessed by the user within the 
node.

Graph nodes
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• For framework-agnostic constructs, 
framework details are not
accessed by the user within the 
node.

Graph nodes
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• Communication between nodes occurs via 
messages, which contain either:

(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)

Data flow
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• Communication between nodes occurs via 
messages, which contain either:

(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)

• Product stores are shallow—the products from 
one store are not propagated to downstream 
stores.
N.B. Products are immutable once committed to the framework.

Data flow

12/14/22 Kyle J. Knoepfel | Monthly DUNE/LDRD meeting14

t1 t2

f1 f2

Reduction

Monitor 

Source
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(a) a product store (black lines), or
(b) a Boolean filter result (red, dashed lines)
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one store are not propagated to downstream 
stores.
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• Each non-filter generates its own product store 
with the products produced by that node.
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• Each non-filter generates its own product store 
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• Product stores and filter results can be cached 
to support hierarchical data processing (dots).
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Configuration
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All modules (except sources) may specify preceding filters via configuration:

{
source: { plugin: 'source_t' },
modules: {

t1: { plugin: 'transform_1' },
t2: { plugin: 'transform_2' },
f1: { plugin: 'filter_1' },
f2: { plugin: 'filter_2' },
reduction: {

plugin: 'reduction',
filtered_by: ['f1', 'f2'], # Logical AND of f1 and f2

},
monitor: { plugin: 'monitor' },

},
}

t1 (run) t2 (evt)

f1 (evt) f2 (evt)

Reduction

Monitor 
(subrun)

Source

Data product dependencies specified by glue code.



Benchmarks to test (transforms and monitors)
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Benchmarks to test (filters)
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Benchmarks to test (reductions)
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• Run performance tests against art (started)

Next steps
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• Run performance tests against art (started)
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• Run performance tests against art (started)

• Look at I/O
• Explore paths and backwards compatibility
• Thoughts?

Next steps
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