Tunneling with Time Dependence
Patrick Draper
("student 6")

Carena-Wagner Fest 2023

Semiclassics provides useful tools/intuition for many problems in QFT. Vacuum decay is a prototypical example.

How do we approach semiclassics of bubble nucleation on time-dependent backgrounds?

Euclidean continuation will result in a complex action

Based on work to appear with Manthos Karydas and Hao Zhang

Semiclassical theory of vacuum decay by bubble nucleation

Typical tunneling potential

$$
V(\phi)=\frac{1}{2} \lambda\left(\phi^{2}-a^{2}\right)^{2}-(\epsilon / 2 a) \phi
$$

We take $t \rightarrow-i \tau$ and look for $O(4)$ invariant saddle points. Solve a shooting problem:

$$
\frac{d^{2} \phi}{d \rho^{2}}+\frac{3}{\rho} \frac{d \phi}{d \rho}=U^{\prime}(\phi)
$$

$$
\Gamma \approx v^{4} \exp \left(-S_{E} / \hbar\right)
$$

- Simple because $\mathrm{O}(4)$ invariance $=>$ ODEs
- nucleation point is a classical bubble with zero momentum
- real-valued fields remain real
- Simple because $\mathrm{O}(4)$ invariance $=>$ ODEs
- nucleation point is a classical bubble with zero momentum
- real-valued fields remain real

Two generalizations:

- $t \rightarrow e^{i \gamma} \tau$
- $V(\phi) \rightarrow V\left(\phi, \chi_{0}(t)\right)$

O(4) invariance broken, DOFs complexified, final states may carry momentum

Loss of $\mathrm{O}(4)$ invariance is a technical complication because ODEs $=>$ PDEs.

To avoid this complication we will work with effective QM models for collective coordinate DOFs. $\mathrm{QM}=>$ back to ODEs.

Start by reviewing how this works for the standard, time-indep, Euclidean case, then extend to $t \rightarrow e^{i \gamma} \tau$, then add time dependence
standard, time-independent Euclidean analysis:
thin-wall effective Lagrangian captures leading semiclassics.

$$
L=-\underset{\text { tensiontlorentic contraction }}{\sigma R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}}+\underset{\text { pressure }}{\epsilon R^{3}}
$$

similar L can be used for Schwinger model, BON,...

$$
\begin{aligned}
& A=\left\langle\mathrm{TV} \text { bubble, } \mathrm{T}_{\mathrm{f}}=0 \mid \mathrm{FV}, \mathrm{~T}_{\mathrm{i}}\right\rangle=? \\
& e^{i S}=\exp \left(i \int_{T_{i}}^{T_{f}} d t\left[-\sigma R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}+\epsilon R^{3}\right]\right)
\end{aligned}
$$

$$
A=\left\langle\mathrm{TV} \text { bubble, } \mathrm{T}_{\mathrm{f}}=0 \mid \mathrm{FV}, \mathrm{~T}_{\mathrm{i}}\right\rangle=?
$$

$$
e^{i S}=\exp \left(i \int_{T_{i}}^{T_{f}} d t\left[-\sigma R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}+\epsilon R^{3}\right]\right)
$$

$$
t \rightarrow-i \tau \quad \text { continuation of } \mathrm{T}_{\mathrm{i}}
$$

$$
e^{-S_{c}}=\exp \left(-\int_{T_{i}}^{T_{f}} d \tau\left[\sigma R^{2} \sqrt{1+\left(\partial_{\tau} R\right)^{2}}-\epsilon R^{3}\right]\right)
$$

$A=\left\langle\mathrm{TV}\right.$ bubble, $\left.\mathrm{T}_{\mathrm{f}}=0 \mid \mathrm{FV}, \mathrm{T}_{\mathrm{i}}\right\rangle=?$
$e^{i S}=\exp \left(i \int_{T_{i}}^{T_{f}} d t\left[-\sigma R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}+\epsilon R^{3}\right]\right)$

$$
t \rightarrow-i \tau \quad \text { continuation of } T_{i}
$$

$e^{-S_{c}}=\exp \left(-\int_{T_{i}}^{T_{f}} d \tau\left[\sigma R^{2} \sqrt{1+\left(\partial_{\tau} R\right)^{2}}-\epsilon R^{3}\right]\right)$

$A=\left\langle\mathrm{TV}\right.$ bubble, $\left.\mathrm{T}_{\mathrm{f}}=0 \mid \mathrm{FV}, \mathrm{T}_{\mathrm{i}}\right\rangle=?$
$e^{i S}=\exp \left(i \int_{T_{i}}^{T_{f}} d t\left[-\sigma R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}+\epsilon R^{3}\right]\right)$

$$
t \rightarrow-i \tau \quad \text { continuation of } \mathrm{T}_{\mathrm{i}}
$$

$e^{-S_{c}}=\exp \left(-\int_{T_{i}}^{T_{f}} d \tau\left[\sigma R^{2} \sqrt{1+\left(\partial_{\tau} R\right)^{2}}-\epsilon R^{3}\right]\right)$
Zero-energy saddle point for which $\mathrm{R}=0$ at some τ_{0} :

$$
\begin{aligned}
& R=\Theta\left(\tau+R_{0}\right) \sqrt{R_{0}^{2}-\tau^{2}} \\
& R_{0}=\sigma / \epsilon, \quad \tau_{0}=-R_{0}
\end{aligned}
$$

"Amplitude to nucleate a bubble at rest at $\mathrm{t}=0$ "

Technically this joins two zero-energy solutions piecewise.
Still a stationary point of the action: $\sigma R^{2} \sqrt{1+\left(\partial_{\tau} R\right)^{2}}$

Now we repeat the computation, but with
$t \rightarrow e^{i \gamma} \tau$

Now we repeat the computation, but with $t \rightarrow e^{i \gamma} \tau$

Zero-energy saddle points for which $\mathrm{R}=0$ at some τ_{0} :

$$
R=\Theta\left(\tau-R_{0} \csc \gamma\right) \sqrt{R_{0}^{2}+\left(e^{i \gamma} \tau-R_{0} \cot \gamma\right)^{2}}
$$

$$
\tau_{0}=R_{0} \csc \gamma
$$

goes to $-\infty$ in the real-time limit

Now we repeat the computation, but with
$t \rightarrow e^{i \gamma} \tau$

Zero-energy saddle points for which $\mathrm{R}=0$ at some τ_{0} :

$$
R=\Theta\left(\tau-R_{0} \csc \gamma\right) \sqrt{R_{0}^{2}+\left(e^{i \gamma} \tau-R_{0} \cot \gamma\right)^{2}}
$$

$$
\tau_{0}=R_{0} \csc \gamma
$$

Return to real R at $\tau=0$, but beyond the classical turning point R_{0}, with nonzero momentum

goes to $-\infty$ in the real-time limit
What do they mean?
amplitudes with semiclassical wavepackets:

$$
\begin{aligned}
& \left\langle\psi_{f}\left(R, T_{f}\right) \mid \psi_{i}\left(R, T_{i}\right)\right\rangle \\
& \psi(R)=e^{i S_{i, f}(R) / \hbar}
\end{aligned}
$$

amplitudes with semiclassical wavepackets:

$$
\begin{array}{r}
\left\langle\psi_{f}\left(R, T_{f}\right) \mid \psi_{i}\left(R, T_{i}\right)\right\rangle \longrightarrow \\
\psi(R)=e^{i S_{i, f}(R) / \hbar} \xrightarrow{ } d R_{i} d R_{f} \int_{R\left(T_{i}\right)=R_{i}}^{R\left(T_{f}\right)=R_{f}} D R e^{-S_{c}}, \\
S_{c}=-i S_{i}\left(R_{i}\right)+i S_{f}\left(R_{f}\right)-i \int_{T_{i}}^{T_{f}} d \tau L_{c}\left(\partial_{\tau} R, R, \tau\right) \\
L_{c}\left(\partial_{\tau} R, R, \tau\right)=e^{i \gamma} L\left(e^{-i \gamma} \partial_{\tau} R, R, e^{i \gamma} \tau\right) .
\end{array}
$$

amplitudes with semiclassical wavepackets:

$$
\begin{array}{r}
\left\langle\psi_{f}\left(R, T_{f}\right) \mid \psi_{i}\left(R, T_{i}\right)\right\rangle \longrightarrow \\
\psi(R)=e^{i S_{i, f}(R) / \hbar} \xrightarrow{l} d R_{i} d R_{f} \int_{R\left(T_{i}\right)=R_{i}}^{R\left(T_{f}\right)=R_{f}} D R e^{-S_{c}}, \\
S_{c}=-i S_{i}\left(R_{i}\right)+i S_{f}\left(R_{f}\right)-i \int_{T_{i}}^{T_{f}} d \tau L_{c}\left(\partial_{\tau} R, R, \tau\right) \\
L_{c}\left(\partial_{\tau} R, R, \tau\right)=e^{i \gamma} L\left(e^{-i \gamma} \partial_{\tau} R, R, e^{i \gamma} \tau\right) .
\end{array}
$$

same bulk EOM, boundary variations relate initial and final semiclassical R, p to features of the states:

$$
\begin{aligned}
& \left.p_{i} \equiv \frac{\delta L_{c}}{\delta \partial_{\tau} R}\right|_{\tau=T_{i}}=S_{i}^{\prime}\left(R_{i}\right) \\
& \left.p_{f} \equiv \frac{\delta L_{c}}{\delta \partial_{\tau} R}\right|_{\tau=T_{f}}=S_{f}^{\prime}\left(R_{f}\right) .
\end{aligned}
$$

amplitudes with semiclassical wavepackets:

$$
\begin{array}{r}
\left\langle\psi_{f}\left(R, T_{f}\right) \mid \psi_{i}\left(R, T_{i}\right)\right\rangle \longrightarrow \int d R_{i} d R_{f} \int_{R\left(T_{i}\right)=R_{i}}^{R\left(T_{f}\right)=R_{f}} D R e^{-S_{c}}, \\
\psi(R)=e^{i S_{i, f}(R) / \hbar}, \\
S_{c}=-i S_{i}\left(R_{i}\right)+i S_{f}\left(R_{f}\right)-i \int_{T_{i}}^{T_{f}} d \tau L_{c}\left(\partial_{\tau} R, R, \tau\right) \\
L_{c}\left(\partial_{\tau} R, R, \tau\right)=e^{i \gamma} L\left(e^{-i \gamma} \partial_{\tau} R, R, e^{i \gamma} \tau\right) .
\end{array}
$$

same bulk EOM, boundary variations relate initial and final semiclassical R, p to features of the states:

$$
\begin{aligned}
& \left.p_{i} \equiv \frac{\delta L_{c}}{\delta \partial_{\tau} R}\right|_{\tau=T_{i}}=S_{i}^{\prime}\left(R_{i}\right) \\
& \left.p_{f} \equiv \frac{\delta L_{c}}{\delta \partial_{\tau} R}\right|_{\tau=T_{f}}=S_{f}^{\prime}\left(R_{f}\right)
\end{aligned}
$$

e.g. $\operatorname{Re}\left(\mathrm{p}_{\mathrm{f}}\right)=\langle\mathrm{p}\rangle$ for packets: $\psi_{f}=N e^{-\left(R_{f}-R_{0}\right)^{2} / 2 \sigma^{2}+i p R_{f}} \Rightarrow \operatorname{Re} S_{f}^{\prime}\left(R_{f}\right)=p=\operatorname{Re}\left(\mathrm{p}_{f}\right)$

Interpretation:

- The solutions for general $\boldsymbol{\gamma}$ connect the false vacuum to wavepackets outside the barrier with zero classical energy
connected by classical, real time evolution to the nucleation point of the critical bubble ($R=R_{0}$, at rest)

$R_{0}|\csc \gamma|$
- tunneling starts earlier (only makes sense if $\mathrm{T}_{\mathrm{i}}<\mathrm{R}_{0} \csc \gamma$)

$$
\left\langle\psi_{f}\left(R, T_{f}\right) \mid \psi_{i}\left(R, T_{i}\right)\right\rangle
$$

γ is accounting for the time translation collective coordinate

Now let us add time dependence.

This can arise, for example, if the tunneling field ϕ is weakly coupled to another field χ slowly rolling in a shallow potential.

Now let us add time dependence.

This can arise, for example, if the tunneling field ϕ is weakly coupled to another field χ slowly rolling in a shallow potential.

at zeroth order in the coupling, same thin-wall profile for $\phi+$ rolling solution for χ
integrate out space to get $\quad L=-\sigma(t) R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}+\epsilon(t) R^{3} \quad \chi(t) \rightarrow \sigma(t), \epsilon(t)$
could also include backreaction of ϕ profile on χ,
but higher order and may be subleading to corrections to the thin-wall limit
$L=-\sigma(t) R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}+\epsilon(t) R^{3} \quad+\quad t \rightarrow e^{i \gamma} \tau$

Look for nontrivial small-R solutions that can connect to the $\mathrm{R}=0$ "vacuum"

Relevant solutions behave as

$$
\begin{aligned}
R & =c \sqrt{\tau-\tau_{0}}\left(1+\mathcal{O}\left(\tau-\tau_{0}\right)\right) \\
c & =i e^{i \gamma / 2} \sqrt{\frac{6\left(\sigma_{0}+e^{i \gamma} \tau_{0} v_{\sigma}\right)}{3 i\left(\epsilon_{0}+e^{i \gamma} \tau_{0} v_{\epsilon}\right)+v_{\sigma}}}
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma\left(e^{i \gamma} \tau\right) & =\sigma_{0}+e^{i \gamma} v_{\sigma}\left(\tau-\tau_{0}\right)+\ldots \\
\epsilon\left(e^{i \gamma} \tau\right) & =\epsilon_{0}+e^{i \gamma} v_{\epsilon}\left(\tau-\tau_{0}\right)+\ldots
\end{aligned}
$$

To determine τ_{0}, shoot for solutions that return to $\operatorname{Im} \mathrm{R}=0$ at $\tau=0$

Im R
examples with slow linear evolution of σ, ε and a range of γ
final states generally acquire small Im p_{f} — slightly off-peak

$$
\begin{gathered}
\psi_{f}=N e^{-\left(R_{f}-R_{0}\right)^{2} / 2 \sigma^{2}+i p R_{f}} \\
\operatorname{Re} p_{f}=-\sigma R_{0}^{2} \csc ^{2} \gamma \cot \gamma+\mathcal{O}\left(v_{\epsilon, \sigma}\right)
\end{gathered}
$$

$\mathrm{v}=0$ on-shell action $S \sim R_{0}^{3} \sigma_{0}, R_{0}^{4} \epsilon_{0}$
first correction can be computed from time-independent solutions (no boundary terms)
$\mathrm{v}=0$ on-shell action $S \sim R_{0}^{3} \sigma_{0}, R_{0}^{4} \epsilon_{0}$
first correction can be computed from time-independent solutions (no boundary terms)
$\left.\Delta \operatorname{Re} S_{c}\right|_{\mathcal{O}(v)}=\frac{\pi}{4} \cot (\gamma) R_{0}^{4}\left(v_{\sigma}-\frac{3}{4} R_{0} v_{\epsilon}\right)$

For fixed $\boldsymbol{\gamma}$, small cf. leading order if variations are slow.

But unbounded as γ approaches 0 , pi... what $\boldsymbol{\gamma}$ should we use?

Recall tunneling starts at $\tau_{0}=R_{0} \csc \gamma$ - require $>\mathrm{T}_{\mathrm{i}}$
If e.g. barrier is growing monotonically, starting earlier = larger amplitudes

$$
\gamma=\left.\csc ^{-1}\left(T_{i} / R_{0}\right) \Rightarrow \Delta \operatorname{Re} S_{c}\right|_{\mathcal{O}(v), \text { max }}=-\frac{\pi}{4} \sqrt{T_{i}^{2}-R_{0}^{2}} R_{0}^{3}\left(\left.v_{\substack{v_{\sigma}-\frac{3}{4} R_{0} v_{\epsilon}}}^{\substack{\text { if +ve, favors } \\
\text { earlier decay }}} \right\rvert\, \begin{array}{c}
\text { if +ve, favors } \\
\text { later decay }
\end{array}\right.
$$

Otherwise later is better, $\gamma=-\pi / 2$ (Euclidean) and leading $\mathrm{O}(\mathrm{v})$ correction vanishes

Recall tunneling starts at $\tau_{0}=R_{0} \csc \gamma$ - require $>\mathrm{T}_{\mathrm{i}}$
If e.g. barrier is growing monotonically, starting earlier = larger amplitudes

$$
\gamma=\left.\csc ^{-1}\left(T_{i} / R_{0}\right) \Rightarrow \Delta \operatorname{Re} S_{c}\right|_{\mathcal{O}(v), \text { max }}=-\frac{\pi}{4} \sqrt{T_{i}^{2}-R_{0}^{2}} R_{0}^{3}\left(\left.v_{\substack{v_{\sigma}-\frac{3}{4} R_{0} v_{\epsilon}}}^{\substack{\text { if +ve, favors } \\
\text { earlier decay }}} \right\rvert\, \begin{array}{c}
\text { if +ve, favors } \\
\text { later decay }
\end{array}\right.
$$

Otherwise later is better, $\gamma=-\pi / 2$ (Euclidean) and leading $\mathrm{O}(\mathrm{v})$ correction vanishes
What precise question does $\exp \left(-\mathrm{S}_{\mathrm{c}}\right)$ address?
T_{i} is the latest time when we're sure there was no bubble maximizing over $\boldsymbol{\gamma}$ computes the leading decay probability over times up to $\mathrm{T}_{\mathrm{f}}=0$

Coupling to gravity

Three approaches to keep the problem tractable (not exhaustive):

- Rigid Minkowski => rigid something time-dep e.g. FRW
- Effective action for a membrane coupled to gravity
- Exact solutions from analytic continuation

Rigid Minkowski => rigid FRW:

$$
\begin{aligned}
d s^{2} & =-d t^{2}+a(t)^{2} d x_{i}^{2} \\
a & \approx 1+H t \quad\left(H R_{0} \ll 1\right) \\
S & \approx \int d^{4} x\left[\mathcal{L}_{\text {flat }}+H t\left(3 \mathcal{L}_{\text {flat }}+\left(\partial_{i} \phi\right)^{2}\right)\right]
\end{aligned}
$$

background spacetime provides the time dependence

Rigid Minkowski => rigid FRW:

$$
\begin{array}{rlrl}
d s^{2} & =-d t^{2}+a(t)^{2} d x_{i}^{2} & & \text { background spacetime } \\
a & \approx 1+H t \quad\left(H R_{0} \ll 1\right) & \text { provides the time dependence } \\
S & \approx \int d^{4} x\left[\mathcal{L}_{\text {flat }}+H t\left(3 \mathcal{L}_{\text {flat }}+\left(\partial_{i} \phi\right)^{2}\right)\right] & \\
\Rightarrow L_{e f f} & =-(1+3 H t) \sigma R^{2} \sqrt{1-\left(\partial_{t} R\right)^{2}}+(1+3 H t) \epsilon R^{3}+\frac{\sigma H t R^{2}}{\sqrt{1-\left(\partial_{t} R\right)^{2}}} \\
& \frac{\text { same as previous }}{\text { new term }}
\end{array}
$$

$\mathrm{O}(\mathrm{H})$ contribution to the on-shell action vanishes

Membrane effective action:
in the static case, use a small generalization of an effective action found by Visser (1992)
$E H+$ spherical brane:
(1) $S=\frac{1}{16 \pi G_{N}} \int_{\mathcal{M}_{1,2}} \sqrt{|g|} d^{4} x\left(R_{1,2}-2 \Lambda_{1,2}\right)+\frac{1}{8 \pi G_{N}} \int_{\mathcal{T}} \sqrt{|h|} d^{3} y K_{1,2}-\mu \int_{\mathcal{T}} \sqrt{|h|} d^{3} y$

Membrane effective action:

in the static case, use a small generalization of an effective action found by Visser (1992)
$\mathrm{EH}+$ spherical brane:
(1) $S=\frac{1}{16 \pi G_{N}} \int_{\mathcal{M}_{1,2}} \sqrt{|g|} d^{4} x\left(R_{1,2}-2 \Lambda_{1,2}\right)+\frac{1}{8 \pi G_{N}} \int_{\mathcal{T}} \sqrt{|h|} d^{3} y K_{1,2}-\mu \int_{\mathcal{T}} \sqrt{|h|} d^{3} y$

Effective action for $\mathrm{R}_{\text {brane }}$:
(2) $S_{\mathrm{brane}}^{\mathrm{eff}}=\frac{1}{2 G_{N}} \int d \lambda\left[-2 R \dot{R} \sinh ^{-1}\left(\frac{\dot{R}}{\sqrt{N^{2} f_{\mathrm{dS}_{T}}}}\right)+2 R \sqrt{f_{\mathrm{dS}_{T}} N^{2}+\dot{R}^{2}} \quad f_{T, F}=1-R^{2} / L_{\mathrm{l}, 2}^{2}\right.$ $\left.+2 R \dot{R} \sinh ^{-1}\left(\frac{\dot{R}}{\sqrt{N^{2} f_{\mathrm{dS}_{F}}}}\right)-2 R \sqrt{f_{\mathrm{dS}_{F}} N^{2}+\dot{R}^{2}}-8 \pi G_{N} \mu N R^{2}\right]$

- λ is an arbitrary parametrization and N is the lapse on the world"line" $-N^{2} d \lambda^{2}=-f_{T, F} d t_{T, F}^{2}+f_{T, F}^{-1} d R^{2}$
- The arcsinh is Visser's trick to rewrite in 1 st order form
- Looks rather different, but actually equivalent to previous for $G_{N} \rightarrow 0$
(1) $S=\frac{1}{16 \pi G_{N}} \int_{\mathcal{M}_{1,2}} \sqrt{|g|} d^{4} x\left(R_{1,2}-2 \Lambda_{1,2}\right)+\frac{1}{8 \pi G_{N}} \int_{\mathcal{T}} \sqrt{|h|} d^{3} y K_{1,2}-\mu \int_{\mathcal{T}} \sqrt{|h|} d^{3} y$
(2) $S_{\mathrm{brane}}^{\mathrm{eff}}=\frac{1}{2 G_{N}} \int d \lambda\left[-2 R \dot{R} \sinh ^{-1}\left(\frac{\dot{R}}{\sqrt{N^{2} f_{\mathrm{dS}_{T}}}}\right)+2 R \sqrt{f_{\mathrm{dS}_{T}} N^{2}+\dot{R}^{2}}\right.$

$$
\left.+2 R \dot{R} \sinh ^{-1}\left(\frac{\dot{R}}{\sqrt{N^{2} f_{\mathrm{dS}_{F}}}}\right)-2 R \sqrt{f_{\mathrm{dS}_{F}} N^{2}+\dot{R}^{2}}-8 \pi G_{N} \mu N R^{2}\right]
$$

$d S / d N=0$ in (2) = junction condition from (1):

$$
R \sqrt{f_{d S_{T}}+\dot{R}^{2}}-R \sqrt{f_{d S_{F}}+\dot{R}^{2}}-4 \pi \mu G_{N} R^{2}=0 \quad \text { gauge fix } \mathrm{N}=1, \lambda=\text { proper time }
$$

N provides reparam invariance => equiv to $\mathrm{H}=0$
This is the only independent equation ($\mathrm{dS} / \mathrm{dR}=0$ gives the proper time derivative of it)

Now we continue $\lambda \rightarrow e^{i \gamma} \tau$
The continued energy is

$$
E=e^{i \gamma} \frac{\pi}{G_{N}}\left[R \sqrt{f_{d S_{F}}+e^{-2 i \gamma} \dot{R}^{2}}-R \sqrt{f_{d S_{T}}+e^{-2 i \gamma} \dot{R}^{2}}+4 \pi G_{N} \mu R^{2}\right]=0
$$

One solution is $R=0$.
To find the other, rearrange: $e^{-2 i \gamma}\left(\frac{d R}{d \tau}\right)^{2}+1-\alpha^{2} R^{2}=0$

$$
\begin{aligned}
\alpha^{2} & =L_{F}^{-2}+\frac{\left(L_{F}^{-2}-L_{T}^{-2}-16 \pi^{2} G_{N}^{2} \mu^{2}\right)^{2}}{64 \pi^{2} G_{N}^{2} \mu^{2}} \\
& \approx R_{0}^{-2}+\left(2 L_{F}\right)^{-2}+\left(2 L_{T}\right)^{-2}+\mathcal{O}\left(G_{N}^{2}\right)
\end{aligned}
$$

Now we continue $\lambda \rightarrow e^{i \gamma} \tau$

The continued energy is

$$
E=e^{i \gamma} \frac{\pi}{G_{N}}\left[R \sqrt{f_{d S_{F}}+e^{-2 i \gamma} \dot{R}^{2}}-R \sqrt{f_{d S_{T}}+e^{-2 i \gamma} \dot{R}^{2}}+4 \pi G_{N} \mu R^{2}\right]=0
$$

One solution is $R=0$.
To find the other, rearrange: $e^{-2 i \gamma}\left(\frac{d R}{d \tau}\right)^{2}+1-\alpha^{2} R^{2}=0$

$$
\begin{aligned}
\alpha^{2} & =L_{F}^{-2}+\frac{\left(L_{F}^{-2}-L_{T}^{-2}-16 \pi^{2} G_{N}^{2} \mu^{2}\right)^{2}}{64 \pi^{2} G_{N}^{2} \mu^{2}} \\
& \approx R_{0}^{-2}+\left(2 L_{F}\right)^{-2}+\left(2 L_{T}\right)^{-2}+\mathcal{O}\left(G_{N}^{2}\right)
\end{aligned}
$$

Relevant solutions: $\quad R(\tau)=\alpha^{-1} \cosh \left[\alpha e^{i \gamma}\left(\tau-\tau_{0}\right)+i(\pi / 2)\right]$

$$
\tau_{0}=\frac{\pi}{2} \alpha^{-1} \csc (\gamma)
$$

Nucleation point: $\quad R(0)=\alpha^{-1} \cosh ((\pi / 2) \cot \gamma)$ real
Similar to previous, real-time <E> of the final wavepacket vanishes

Simplest (space)time-dependent modification:
$\mu=>\mu(t, r)$

This can again arise from certain (rather artificial) weak couplings to slowly-evolving spectators.

EOM:

$$
\frac{d}{d \lambda}\left[\frac{2 R}{\left(\frac{\partial q}{\partial N}\right)}\left(\sqrt{f_{d S_{T}}+N^{-2} \dot{R}^{2}}-\sqrt{f_{d S_{F}}+N^{-2} \dot{R}^{2}}-4 \pi G_{N} \mu R\right)\right]=-8 \pi G_{N} N R^{2} \frac{\partial \mu}{\partial t_{d S_{F}}}
$$

$$
q \equiv f_{d S_{F}}^{-1} \sqrt{f_{d S_{F}} N^{2}+\dot{R}^{2}} \quad \text { gauge fix } N=1 \text { at the end }
$$

Can follow same procedure: continue, solve $\mathrm{d} \mu / \mathrm{dt}=0$ case, compute $\mathrm{d} \mu / \mathrm{dt}$ correction to S

An exact solution

Lorentzian KK cosmology: $\quad d s^{2}=-d y^{2}+y^{2} d \phi^{2}+d t^{2}+d x^{2}+x^{2} d \psi^{2}$

If $t \sim t+2 \pi$ this is ordinary KK theory in a funny "Milne"-type coordinate system.
If $\phi \sim \phi+2 \pi$ it is a KK cosmology with the circle shrinking/growing in time y

An exact solution

Lorentzian KK cosmology: $\quad d s^{2}=-d y^{2}+y^{2} d \phi^{2}+d t^{2}+d x^{2}+x^{2} d \psi^{2}$

If $t \sim t+2 \pi$ this is ordinary KK theory in a funny "Milne"-type coordinate system.
If $\phi \sim \phi+2 \pi$ it is a KK cosmology with the circle shrinking/growing in time y

The singularity at $\mathrm{y}=0$ is an annoyance which we can regulate by twisting the periodicity:
take $(t, \phi) \sim\left(t+2 \pi n \frac{\mu}{\sqrt{\mu-a^{2}}}, \phi+2 \pi n \frac{a}{\sqrt{\mu-a^{2}}}\right)$ with $0 \leq a^{2} \leq \mu$
The minimum circle radius in Milne patch is now $\mu / \sqrt{\mu-a^{2}}$. Also extend spacetime Milne->Mink (not completely innocuous)

An exact solution

This "vacuum" cosmology is unstable. There is a candidate "decay product":

$$
\begin{aligned}
& d s^{2}=\frac{r^{2}+a^{2} \cosh ^{2} \theta}{r^{2}+a^{2}-\mu} d r^{2}+d t^{2}-\frac{\mu}{r^{2}+a^{2} \cosh ^{2} \theta}\left(d t-a \sinh ^{2} \theta d \phi\right)^{2} \\
& \quad+r^{2}\left(-\left[1+\frac{a^{2} \cosh ^{2} \theta}{r^{2}}\right] d \theta^{2}+\sinh ^{2} \theta\left[1+\frac{a^{2}}{r^{2}}\right] d \phi^{2}+\cosh ^{2} \theta d \psi^{2}\right)
\end{aligned}
$$

This is a real Lorentzian manifold given by the continuation $t \rightarrow i t, \theta \rightarrow i \theta, \phi \rightarrow i \phi$ of the 5D Myers-Perry black hole with one angular momentum ($a=J / M, \mu=r_{S}$)

Geometry caps off smoothly at $r=r_{H}=\sqrt{\mu-a^{2}}$: a bubble of nothing
Asymptotics match the vacuum spacetime+periodicities $\left(\theta \rightarrow \tanh ^{-1}(y / x), r \rightarrow \sqrt{x^{2}-y^{2}}\right)$

The induced metric on the bubble wall is that of a spheroid which expands in time

The "instanton" (MP: $d t \rightarrow i d t$) is quasi-Euclidean because MP is stationary rather than static,

$$
d t d \phi \rightarrow i d t d \phi
$$

It can be joined smoothly to the nucleated bubble on a hypersurface of zero momentum
$S=\frac{\pi^{2} \mu^{2}}{G_{5} \sqrt{\mu-a^{2}}}$ recovers Witten's result for a=0, diverges in the extremal limit where the minimum KK circle size diverges

Since the background is time dependent, there is no time translation symmetry and the instanton computes a probability rather than a rate.

Questions:

application to time-dependent Schwinger process?
generalization to multiple collective coordinate QM, full QFT?
membrane approach to other cases with dynamical gravity?
other exact instantons from other MP/black ring continuations?

