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Semiclassics provides usetul tools/intuition
for many problems in QFT. Vacuum decay

is a prototypical example.

How do we approach semiclassics of
bubble nucleation on time-dependent
backgrounds?

Fuclidean continuation will result in a
complex action

Based on work to appear with Manthos Karydas and Hao Zhang



Semiclassical theory of vacuum decay by bubble nucleation

ypicalltunneling potential We take t - — it and look for O(4) invariant
Vi(p) = §A(gb2 — a2)2 — (€/2a)¢ saddle points. Solve a shooting problem:
d* ¢ - 3do ,
dp? | 0 dp =U'(¢)
U(p)

O(D)

I = viexp(—S;/h)



e Simple because O(4) invariance => ODEs
* nucleation point is a classical bubble with zero momentum

¢ real-valued fields remain real



e Simple because O(4) invariance => ODEs
* nucleation point is a classical bubble with zero momentum

¢ real-valued fields remain real

Two generalizations:
. t— e 7
* V(9) = V(o xo(?))

O(4) invariance broken, DOFs complexified, final states may carry momentum



Loss of O(4) invariance is a technical complication because ODEs => PDEs.

To avoid this complication we will work with effective QM models
for collective coordinate DOFs. QM => back to ODEs.

Start by reviewing how this works for the standard, time-indep, Euclidean case,

then extend to t — e'’1,
then add time dependence



standard, time-independent Euclidean analysis:

thin-wall effective Lagrangian captures leading semiclassics.

0
L = —O'R2 \/1 — ((%R)Q + ERS | A
tension+|orentz contraction pressure R FV
V
TV  -&
/
................................. 5 R

similar L can be used for Schwinger model, BON, ...




A = (TV bubble, Ty = 0|FV, T;) =7

| T ] i
'S = exp (z / dt |—oR*\/1 — (0, R)? + €R’
Tf,; - =



A = (TV bubble, Ty = 0|FV, T;) =7

| Ty _
e’ = exp (z/ dt |—oR*\/1 — (0, R)? + €R’ )

1

t — —a1T continuation of T,

T, _
e~ ¢ = exp (/ dr |cR*\/1+ (0;R)? — eR®

1




A = (TV bubble, Ty = 0|FV, T;) =7

"Amplitude to nucleate a bubble

| T ) ) at rest at t=0"
e’ = exp (z/ dt |—oR*\/1 — (0, R)? + €R’ )
i _ ol

1

t — —a1T continuation of T,

T, _
e~ ¢ = exp (/ dr |cR*\/1+ (0;R)? — eR®

1

Sc = cO?4/€3

_1_5:_ (and ¢ matches the QFT)

Zero-energy saddle point for which R=0 at some 7
R = O(r + Ro)\/RE — 2.

R() — 0-/6 . T — _RO _2_0-_




A = (TV bubble, Ty = 0|FV, T;) =7

"Amplitude to nucleate a bubble
at rest at t=0"

| T; _
e’ = exp (z/ dt |—oR*\/1 — (0, R)? + €R’ )
_ _ -

1

t — —a1T continuation of T,

1

T, _
e~ ¢ = exp (/ dr |cR*\/1+ (0;R)? — eR®

Sc = cO?4/€3

_1_5:_ (and ¢ matches the QFT)

Zero-energy saddle point for which R=0 at some 7
R = O(r + Ro)\/RE — 2.

R() — 0-/6 . T — _RO _2_0-_

Technically this joins two zero-energy solutions piecewise.
Still a stationary point of the action: oR*\/1 + (0. R)?




Now we repeat the computation, but with

t— eVt




Now we repeat the computation, but with

t— eVt

Zero-energy saddle points
for which R=0 at some 7

Se = co?/e3 forall y

tunneling starts at 7

goes to -0o in the real-time limit



Now we repeat the computation, but with

t— eVt

Zero-energy saddle points
for which R=0 at some 7

Se = co?/e3 forall y

Returntoreal Rat 7 =0, :
but beyond the classical turning point Ry, i

with nonzero momentum : tunneling starts at 1

goes to -0o in the real-time limit
What do they mean?



amplitudes with semiclassical wavepackets:

(W (R, Ty) i (R, T5))
B(R) = iSts(R)/h



amplitudes with semiclassical wavepackets:

R(Ty)=Ry
(b (R, Ty) s (R, T})) ————————— [ dRidR; / DRe=5

(R) = S (FI/n T

1y
S, = —iSi(Ri) +iS;(R;) — i / dr Lo(0. R, R, )
1

L.(O;R, R, T) =e"L(e0.R,R,eT).



amplitudes with semiclassical wavepackets:

R(Ty)=Ry
(b (R, Ty) s (R, T})) ————————— [ dRidR; / DRe=S .

w(R) _ eiSi,f(R)/h “ R(Ti)=R,

Ty
S, = —iSi(Ri) +iS;(R;) — i / 07 Lo(0.R, R, 7)

1
L.(0;R,R,T) =€e"L(e”0,R,R,eT).

same bulk EOM, | 0L,

boundary variations relate b 00:R| __p ()
initial and final semiclassical 5T
R,p to features of the states: — c — S (R¢).

T:Tf



amplitudes with semiclassical wavepackets:

R(Ty)=Ry
(b (R, Ty) s (R, T})) ————————— [ dRidR; / DRe=S .

(R) = S (FI/n T

Ty

S, = —iSi(R;) +iS;(Ry) — i / d7 Lo(9,R, R, )

1
L.(0;R,R,T) =€e"L(e”0,R,R,eT).

same bulk EOM, L 0L, — 9 (R.
o Pi = _ z( Z)
boundary variations relate 00 R|__, —— —
oo , , , T="T5 semiclassical trajectories also
initial and final semiclassical 5T appx certain packet amplitudes!
R,p to features of the states: pr = c — S} (Ry).
00, R

T:Tf

e.g. Re(pp) = <p> for packets: ¢ = Ne~(Rs—Ro)*/20°+ipRs _ Ro S}(Rf) = P = Re(py)



Interpretation:

e The solutions for general y connect the talse vacuum
to wavepackets outside the barrier with zero classical energy

connected by classical, real time evolution

to the nucleation point of the critical bubble (R=Ro, at rest)

* tunneling starts ear

ler

(only makes sense i
(Y5 (R,

T, < Rp csc )
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R = 0O(1 — Rycsc 7)\/3(2) + (e"Y7 — Ry cot y)?

Y is accounting for the time translation collective coordinate



Now let us add time dependence.

This can arise, for example, if the tunneling

field ¢ is weakly coupled to another field y
slowly rolling in a shallow potential.




Now let us add time dependence.

This can arise, for example, if the tunneling

field ¢ is weakly coupled to another field y
slowly rolling in a shallow potential.

at zeroth order in the coupling, same thin-wall profile for ¢ + rolling solution for y

integrate out space to get L = —o(t)R*\/1 — (0;R)? + €(t)R® x(t) — o(t), e(?)

could also include backreaction of ¢ profile on y,
but higher order and may be subleading to corrections to the thin-wall limit



L=—-ct)R*/1— (8,R)?2+et)R® + t—e 7

| ook for nontrivial small-R solutions that can connect to the R=0 “vacuum”

Relevant solutions behave as

R:C\/T—To(l—l—O(T—TO)),

g(e' 1) = o9+ e Vv, (T —19) + ...
where (e77) = 00 ( 0)

o iiv/2 6(c0 + €790, ) e(e77) = €g + e (T —T0) + .. .
3t(eg + eV TV ) + Vo

To determine g, shoot for solutions that return to Im R=0 at =0



examples with slow linear
evolution of 0, € and a range of y

final states generally acquire
small Im ps— slightly off-peak

¢f — Ne—(Rf—Ro)2/20‘2+’ipr

Repr = —oRg csc® ycoty + O(ve o)

Im R
04+

~0.4}

~
D R

Re R



_ - 3 4
v=0 on-shell action § ~ Rjoy, Ry¢

first correction can be computed from time-independent solutions
(no boundary terms)



_ - 3 4
v=0 on-shell action § ~ Rjoy, Ry¢

first correction can be computed from time-independent solutions

(no boundary terms)
ARe S,

010 015 020

T 3 ?
ARe Sc‘(’)(v) =7 cot(v)Rg (vg — ZRove) 001!

i = —7/4
-0.02} ! /

For fixed vy, small cf. leading order o0al
if variations are slow. |
~0.04
But unbounded as y approaches O, pi... |
~0.05]

what y should we use?



Recall tunneling starts at 79 = Rpcscy — require > T,

f e.g. barrier is growing monotonically, starting earlier = larger amplitudes

3
v=csc (T;/Ry) = | ARe Sclow),max = —g\/Tf — RZR; (UJ — ZROUG

if +ve, favors

if +ve, favors
later decay

earlier decay

Otherwise later is better, y = — #/2 (Euclidean) and leading O(v) correction vanishes




Recall tunneling starts at 79 = Rpcscy — require > T,

f e.g. barrier is growing monotonically, starting earlier = larger amplitudes

3

Vo= CSC_l(Ti/RO) = | ARe SC‘O(’U),maX — _%\/TZQ - R(Q)RS (UU - ZROUG

if +ve, favors

if +ve, favors
later decay

earlier decay

Otherwise later is better, y = — #/2 (Euclidean) and leading O(v) correction vanishes

What precise question does exp(-S.) address?

Ti is the latest time when we're sure there was no bubble
maximizing over y computes the leading decay probability over times up to T¢=0




Coupling to gravity

Three approaches to keep the problem tractable (not exhaustive):

* Rigid Minkowski => rigid something time-dep e.g. FRW
e Effective action for a membrane coupled to gravity

e Exact solutions from analytic continuation



Rigid Minkowski => rigid FRW:

ds® = —dt* + a(t)*dz?
a~1+ Ht (HRy < 1)

S ~ /d41‘ [Lflat -+ Ht(gﬁflat - (&L¢)2>}

background spacetime
provides the time dependence



Rigid Minkowski => rigid FRW:

ds® = —dt* + a(t)*dz?
a~1+ Ht (HRy < 1)

S ~ /d4CE‘ [»Cflat -+ Ht(gﬁflat - (8Z¢)2)}

background spacetime
provides the time dependence

5 3 ocHtR?
= Lerr = —(1 4+ 3Ht)oR*\/1 — (0;R)2 + (1 + 3Ht)eR> A
V1= (0RR)7
same as previous new term

O(H) contribution to the on-shell action vanishes



Membrane effective action:

in the static case, use a small generalization of an eftective action tfound by Visser (1992)

“H + spherical brane:

1 1
— d* _92A | hld3y K o — / h|d®
(1) S = oy o, Vil o =200+ o | VIHEyEL [Vl




Membrane effective action:

in the static case, use a small generalization of an eftective action tfound by Visser (1992)

“H + spherical brane:

1 1
— d* _92A | hld3y K o — / h|d®
(1) S = oy o, Vil o =200+ o | VIHEyEL [Vl

~ffective action for Rerane:

1 i : R : _ 1 _ p2/72
(2) S‘tc;l;fane = e /d)\ — 2RRsinh™! (\/NQf ) + ZR\/deTN2 + R? frp=1-R°/L{,
. dST
+ 2RRsinh™* (\/NQf ) — 2R\/deFN2 + R? — 87G nuN R?
dSp i

® /s an arbitrary parametrization and N is the lapse on the world”line” —N?d\* = —fr pdt7 p + f7 pdR

® The arcsinh is Visser's trick to rewrite in 1st order form

® | ooks rather different, but actually equivalent to previous for Gy — 0



1 1
— V0ald? — 9A | VIbldPy Ky 5 — /\/hd?’
(1) S 67~ /M1,2 gld x (R 2 1,2) 87TGN/7' h|d°yKy 2 — p ; h|d”y

o 1 ' S R .
(2) Strane = Telt /d)\ — 2RRsinh™* (\/szds ) +2R\/deTN2 1+ R2

R
VN2 fas,

+ 2RRsinh ™’ ( ) _ QR\/deFN2 + R? — 87GnuNR?

dS/dN=0 in (2) = junction condition from (1):

R\/deT + RQ — R\/deF + RQ — 47T/LGNR2 = 0 gauge fix N=1, A=proper time

N provides reparam invariance => equiv to H=0

This is the only independent equation (dS/dR=0 gives the proper time derivative of it)



Now we continue 4 — et

The continued energy is

T

E=¢e"— R\/deF + e 21T R2 — R\/deT + e—2I7R2 + 47TGN,UR2 = 0

Gn

One solution is R=0.

To find the other, rearrange:

6—2@'7 (

dR

dT

%
) 11— a’R?

0

84

2

(L2 — L2 — 1672G2 p2)°
6472G5; 112
~ Ry + (2Lr) " 4 (2L7) 7 + O(GY)

= L%




Now we continue 4 — et

The continued energy is

T

E=¢e"— R\/deF + e 21T R2 — R\/deT + e—2I7R2 + 47TGN,UR2 = 0

Gn

One solution is R=0.

y
. (dR
To find the other, rearrange: 2 (d—) + 1 — a?R?
-

0

Relevant solutions:  R(7) = a 'cosh [a e’ (T — 1) + i(7/2)]

Nucleation point:  R(0) = a *cosh((7/2)coty) real

84

Similar to previous, real-time <E> of the final wavepacket vanishes

2

(L2 — L2 — 1672G2 p2)°
6472G5; 112
~ Ry%+ (2Lp) 2 4+ (2L7) "% + O(G%)

= L%




Simplest (space)time-dependent modification:
p=>p(t,r) time

other modifications quite nontrivial...

This can again arise from certain (rather artificial)
weak couplings to slowly-evolving spectators.

Ol
8tdSF

EOM: ' ' = —81GNNR’

Can follow same procedure: continue, solve du/dt=0 case, compute du/dt correction to S



An exact solution

Lorentzian KK cosmology: ds* = —dy® + y*do” + dt* + dz* + x*di)?

ft ~ t+ 2x this is ordinary KK theory in a funny “Milne”-type coordinate system.

it ~ ¢+ 2rxitis a KK cosmology with the circle shrinking/growing in time y



An exact solution

Lorentzian KK cosmology: ds* = —dy® + y*do” + dt* + dz* + x*di)?

ft ~ t+ 2x this is ordinary KK theory in a funny “Milne”-type coordinate system.

it ~ ¢+ 2rxitis a KK cosmology with the circle shrinking/growing in time y

The singularity at y=0 is an annoyance which we can regulate by twisting the periodicity:

. ,Q + 2nn - ) with 0 < a?<pu

Vi —al Vi —al

The minimum circle radius in Milne patch is now //t/\///t —d

take (t, ) ~ (t + 27n

. Also extend spacetime

Milne->Mink (not completely innocuous)



An exact solution

This "vacuum” cosmology is unstable. There is a candidate “decay product”:

r2 1+ g2 cosh® 0

ds2 — dr? + dt? H dt — asinh? §d¢)?
r? +a? — 1 r? + a? cosh29( ?)
" a2cosh? 6’ a®
42 (_ 1142 002 df? + sinh® 6 |1 - a2 d¢* + cosh” 9d¢2>
" r

This is a real Lorentzian manifold given by the continuation t — it,0 — 10, ¢ — i¢
of the 5D Myers-Perry black hole with one angular momentum (a = J/M, u = rg)

Geometry caps off smoothly at r = ry = \/,u — a’ : a bubble of nothing

Asymptotics match the vacuum spacetime+periodicities (0 — tanh™!(y/x), r — \/x2 — )



The induced metric on the bubble wall is that of a spheroid which expands in time

The “instanton” (MP: df — idt) is quasi-Euclidean because MP is stationary rather than static,
dtd¢ — idtdg

't can be joined smoothly to the nucleated bubble on a hypersurface of zero momentum

s o | | -
S = recovers Witten's result for a=0, diverges in the extremal limit where the
GS\/,M — 612

minimum KK circle size diverges

Since the background is time dependent, there is no time translation symmetry and the instanton
computes a probability rather than a rate.



Questions:

application to time-dependent Schwinger process?
generalization to multiple collective coordinate QM, tull QFT?
membrane approach to other cases with dynamical gravity?

other exact instantons from other MP/black ring continuations?



