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1. Configurable Calorimeter
simulation for AI - COCOA

Advertising COCOA

Configurable calorimeter simulation for Al applications

Francesco Armando Di Bello !, Anton Charkin-Gorbulin 2, Kyle Cranmer, »yEtienne
Dreyer *¢, Sanmay Ganguly 2, Eilam Gross °, Lukas Heinrich /, Lorenzo Santi °,
Marumi Kado °”, Nilotpal Kakati °, Patrick Rieck *°, Matteo Tusoni °



Particle reconstruction

Hard scatter process Final state particles Energy deposits in detector

predicted
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@ interactions

Infer the set of particles which produced
the set of energy deposits in detector
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Open calorimeter model
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ATLAS-like calorimeter simulation
« 3 ECAL + 3 HCAL concentric GELNTZL" calorimeter layers

 Interfaced to Pythia8 event generator
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Graph i1illustration (single jet)
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truth particles

X ® photon

X @ neutral hadron

X ® charged hadron
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W mass example
W-oe+v

electron
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e superclustered

e simply calibrated
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Transverse mass:

ma = 2p¥)ET‘?iSS( 1 — cos @)

Event Fraction

= demonstrates good overall
response at event-level
(i.e. EM* reconstruction)
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Comparison

Goal

Primary use

- Configurable

» Interface to Pythia

- Parameterized track smearing
* Photon conversions

- Jet clustering algo.

» Event display

Fully simulated calorimeter shower
Specific LHC experiment tunes
Electron reco
Particle flow algorithm
Pileup

Jet substructure

Delphes COCOA

Details, GEANT-based
microscopic simulation

Speed, realistic treatment of
main observables

Smear truth particles to Fully-featured datasets for training

resemble reco objects ML models
Y Y
N Y
Y Possible

track & cluster supercluster (Brehm)

Basic subtraction Parameterized (ATLAS-like)
Y Possible

Parameterized Raw



VBF H -

* Forward jets

* Topoclusters colored separately
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VBF H -

* Forward jets

% ECAL, HCAL layers colored separately
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Quick start guide

https://cocoa-hep.readthedocs.io/
https://github.com/cocoa-hep/cocoa-hep

docker pull ghcr.1io/cocoa-hep/cocoa—hep:main
docker image tag \

$(docker images | grep cocoa-hep | head -n 1 | awk '{print $3}') \
cocoa-hep

dOCker docker run -it cocoa-hep

‘o(=Jda\4" [ 39 git clone git@github.com:cocoa-hep/cocoa-hep.git; cd cocoa—-hep/COCOA
source ../setup_cvmfs.sh

mkdir build; cd build
cmake ../

make

cd ..

. /build/COCOA \
——macro macro/Pythia8/ttbar.in \
——conf1ig config/config_default.json

11



2. An Intelligent Bump Hunter or
Data Directed Paradigm



IBH in a Nut Shell

 Qur vision is an accessible, fast
and reliable bump hunter that is
independent of the expected
background knowledge

* First attempt (proof of concept)
Volkovich, De Vito Halevy, Bressler
https://arxiv.org/abs/2107.11573,
EPJC

* This talk: Introducing a novel
iImproved and Intelligent Deep
Learning architecture (WIP).
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https://arxiv.org/abs/2107.11573

The motivation and status of two-body resonance decays after the LHC Run 2 and beyond

Motivation

Jeong Han Kim, Kyoungchul Kong, Benjamin Nachman, Daniel Whiteson
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Why DDP with IBH?

* |sn’t that what you do once ATLAS and CMS release some DATA?

* The traditional method is resource intensive‘allowing only analyzing a limited region a
the DATA Phase-Space spanned by some'relevant variables.

 Using a blind analysis paradigm, in which an enormous amount of time and effort is
invested before looking at the data, i.e. on background modeling and systematic
uncertainty estimation.

* The traditional analysis method is very slow and inconclusive. It does not have a
“coverage”of all interesting anomalies

 DDP is complementary to the Blind Analysis paradigm.

* Without using MC simulation, and without having any idea about the underlying
background, the strategy consists of quickly searching the observable-space,
for exclusive regions exhibiting a significant deviation from some fundamental SM

property
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IBH: Mode of-Operatio

 Assumption: The invariant mass distributions is
smoothly falling in the absence of resonances

« We train a NN to map invariant mass distributions int8|
4 -

significance distributions
WITHOUT A-PRIORI KNOWLEDGE OF THE
BACKGROUND

[2] https://arxiv.org/abs/2107.11573

ted data

Genera
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https://arxiv.org/abs/2107.11573
https://arxiv.org/abs/2107.11573
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 Smoothly Falling Functions

The parameters a and b are defined such that each curve
decays between two points, (x1; y1) and (x2; y2), where
x1 < x2 are the centers of the extreme bins and y1 > y2
.are randomized from the interval [100,10000]
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The Bakground Functions Reference

exponential
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Generating Functions from the Reference

orange: same function is stretched from 20-75—>1-101

1000 { 1 . . 1000 { 1 . .
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0 0- -

0 20 40 60 80 100 0 20 40 60 80 100
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Generating Functions from the Reference

Each plot represents variations of a specific function

1000 - : : |
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800 4 In_negative, xlims: (11, 91) w00 - one_over_x_cubed, xlims: (11, 91)
In_negative, xlims: (21, 81) —— one_over x_cubed, xlims: (21, 81)
_— — |In_negative, xlims: (31, 71) 500 | —— one_over_x_cubed, xlims: (31, 71)
In_negative, xlims: (41, 61) - one_over_x_cubed, xlims: (41, 61)
400 - 400 A
200 A 200 -
0 0-
0 20 40 60 80 100
1000 A : 1000 A :
— one_over_x to 4th, xlims: (1, 101) — one_over X squared, xlims: (1, 101)
500 - one_over x to 4th, xlims: (11, 91) 500 - one_over X squared, xlims: (11, 91)
— one_over_x _to 4th, xlims: (21, 81) —— one_over_x _squared, xlims: (21, 81)
_— — one_over_ X _to 4th, xlims: (31, 71) _— — one_over X _squared, xlims: (31, 71)
one_over x _to 4th, xlims: (41, 61) - one_over_x_squared, xlims: (41, 61)
400 - 400 -
200 A 200 1
0- 0-

19



Data Set - Synthetic Data
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Network Input and Target

Bump hunt - DDP [2]

* Network input - Synthetic distributions derived by —— Observed
Poisson fluctuation of smoothy falling functions 0001 o zfc::lri“;‘go {0.6
dressed with some injected Signal o \v\mm\g
© 3000 . ©
\ g / L ~Sa — loa _g
-l e
C 2000 g
* Network target - Bin by bin significance calculated e 2
using Profile Likelihood Ratio test statistic relative to ° Loool 192
the smooth known background ->
An ideal analysis output of - — _ 0.0
\ECBT 5.0 10.167 +2
— ©
- ©
' @
Z2 - — ZlOg - 0.0l ﬁA_,ﬂ,;o.ooog
[2] https://arxiv.org/abs/2107.11573 L(//tS + B) 0 10 20 Bins 30 . >0
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Data composition:

Generating histograms from a Poisson
fluctuated 10 analytical falling functions
as background

Injecting a 6 bin width Gaussian signal on
top of the background G(i,3)

#bins: 30,40,...,100 mass bins;
Dynamic range: 10 - 100,000 entries/bin;
Signal significance range: [0 - 10]

Data set: 90% trainning, 10% validation

1M samples for any bin combination,
900k x 8 = 7.2M training samples

IBH - Injecting Signal Procedure

Number of samples

12000 -

Z_max (PL)

Maximal Z_PL

Injected Z

Injected z
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4000 - 10000 -

2000 - 5000 -

0 1
0 2 4 6 8 10 0 2 4 6 8 10
Injected z Maximal z

0 -

Distribution of the injected signal significance, Zin; Distribution of the Maximal measured Z

e | EE pushes Z maximal to the right for
low Z_inj

* Downward fluctuations push the high
Z_Inj to the left
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Z n et3 (nbins ’ nch_out)

Convi1D
GCIQEIERS)
x4
=

ConviD

GCEIGEIERK)
Conv1D

(kernel=9)
Conv1D

(kernel=3)

Concatenate

—_— MLP —

Skip conn

Mixes all representations
For each bin independently >, .| cs

Input
histogram

(nbins’ 1 )

Learns from the neighborhoods
Of different size from the raw input
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7,
<prediciea

Zpy

ZP T

 Agnostic to bin count

* Sensitivity over broad dynamic range
(#entries/bin—[10,100K])

 Stable
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Znet3 Performance
Synthetic Data

max __

Performance quantified in terms of Z; max

pred

. 1’;’2‘”‘ - maximal significance calculated via the

likelihood ratio test

Zl’;’;‘fe‘; - The maximal predicted significance

Generated data

100000

800007

60000+

400007

20000¢

OF
7.57

5.0r
N 25¢

0.0r

25

—— Observed
Background

—— Signhal x 6642.060457

- Z PL
—— Z pred 7

Bkg prediction

0 20

40 60 80
Bins

100

O O O .
o (&) Co o

Scaled data

—
N

0.000
0.833
(©

10.667 §
10.500 3
10333 ©
101677

0.000



Quantifying NN Performance via a Confidence Belt

For a given Z_injected

Plotting a histogram of Z_PL

Taking o * 1.96 which correspond to 95%
confidence level

Plot it as a function of Z_injected

~

Z_PL

Z_Injected
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Quantifying NN Performance

Confidence Interval

10 10
b 95%CL -~ 95%CL
gl t 68%CL gl = 68%CL
0 - 6 -
4 - 5 47
L ‘N
2 o"'... 2
3 4 "l
0 - 0
-_
-2 -2
0 1 2 3 - 5 (3] 7 8 9 10 0 1 2 3 - 5 (§) 7 8 9 10
Z Injected Z Injected
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Quantifying NN Performance

Confidence Interval

10 10
b 95%CL - 95% CL
gl t 68%CL gl = 68%CL
6 / 6 -
.’ B B BN BN BN BN B Em — —
4 - .o‘" a 4 -
’.*M <N
2 o"’.. 2 -
by "
0 - 0
= ———l
-2 -2
0 1 2 3 4 5 (&} 7 8 9 10 0
Z Injected

Obsrving 5 sigma—>Z7=4.8+-0.8
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HEP Data

Distribution of the dielectron invariant mass for events passing the full selection [3]

ATLAS

Search for high-mass dilepton resonances using 13 fb ! Vs =13 TeV, 139 fb™

of ppcollision data collected at \/E = 13TeV with the
ATLAS detector

Events / 10 GeV
2,

Generate data from extracted bkg distributions from the

IHIII| Illllllll Illllllll IHIIIII| IIIHIII| IIIIHII|

HEP paper using fitting functions suggested in the paper: e e Data .
Background-only fit ‘"
b 59 log (z) 1= ---- Generic signal at 1.34 TeV, I/m = 0% E
m — m (1 — €Y . pluoPilOBA\Z) e Generic signal at 2 TeV,I['/m = 0% E
f“ ( %) fBW’Z ( %) ( ) 1 0—1 - =+ Generic signal at 3 TeV,I'/m = 0% g + +
1 l . 1

= 20ty 4yt T NI B
:é _g +_+ _ +_+++;{+_ # * _+} H{ +.+.+ ++ # #Hﬁ} +{ .++* L .ﬁ+ * .++$- ;ﬁ}#ﬂ* H &-&- &M“ ...... b & :
S 3102 1 63 2%10°  3x10°

Mg [GEV]

[3] https://doi.org/10.17182/hepdata.88425.v3
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HEP Data

Data generated using paper fit formula and parameters
Same generating pipeline:

 Generate bkg

e Inject signal

 Fluctuate

 (Calculate Z_PL

e Train

e Evaluate

~ Znet 3 performance: HEP data - all #bins

T e
’ 08 aiPannl 5. W WL bl WP T Lol o3 T, ’
E , }‘“.S‘a o2 35 oy 2 - ii,‘,‘;‘n 2 a®
N
|
“§ 0
NQ-l ; ; % po .¢,.. o8 W
o - LR > 2 o L 8 4 & - & e .
21 - D3 , ‘~’:,: ‘;’ }'t -'(', A\~. ,:—‘.f‘; ‘i.a a : } » :‘ . .
4 1 d oI T Pt e ) 1 =036,6=132
—-31 ¥ @ Gom w wew eEwm e De 2 Samoa . o -
0 2 4 3 8 10 12
ZPL
Sample result (Znet 3 on HEP 100bins data)
35000 4 o — Observable
---- Background
30000 - —— 2znet3 v8 10_func prediction
25000 1
2
— 20000 -
g
L 15000 +
10000 -
5000 -
0.
Q
24
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Real Data example : Higgs - diphoton
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- — Q o > .
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[4] http://arxiv.org/abs/arXiv:1207.7214 31
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Marcela in an Interview - the 90s

At CERN, for the first time in my life, I got immersed deeply into what was going on in the experimental
world Every single wvettd-diseuss with experlmet stdocs like me, such as Fabiola
? *’ | Irta Felcini, ... all obsessed with
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NUCLEAR
PHYSICS B

S o Nuclear Physics B
‘ Volume 580, Issues 1-2, 31 July 2000, Pages 29-57 e

ELSEVIER

Reconciling the two-loop diagrammatic and
effective field theory computations of the mass
of the lightest CP-even Higgs boson in the
MSSM

M. Carena ®® H.E. Haber €, S. Heinemeyer d W. Hollik €, C.E.M. Wagner bfg G, Weiglein b O X
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Carlos Wagner
November 21, 2013 - Naperville - as

(SRR

| found this quote written somewhere. | had notes of its origins, but | misplaced them,
and my weak mind no longer has the eidetic memory | used to enjoy in the past, so | car
not give proper credit to its author. Let me emphasize that when | first read it, |
dismissed it as a great exaggeration, a scientific fallacy and even a plagiarism of
Borges' Vindication of the Kabbalah. | am no longer certain of any of these facts, and
therefore | decided to share it with you. Here it is, in the way | transcribed it. | apologize
to the author, if he/she ever reads it, for the possible mistakes introduced in my
transcription :

"There is more energy in the Higgs vacuum than in any other known available energy
resource. Although it looks impossible right now, accessing such energy source opens
an impressive range of possibilities that are hard to conceive today.

In order to understand the secret message encoded in the Higgs field and find out if
this is possible, we need to examine the Higgs properties in great numerical detall,
arguably until the absurdity. This will not demand hundreds of holes in the ground, like
the extraction of other mineral resources do. A single hole may suffice. The investment
Is relatively minor and the technology to produce Higgs particles and analyze the
properties of the Higgs field, is well understood.

Many economic powers are interested in investing in the analysis of the Higgs

properties. | suspect that those investing in this field understand that it may lead to a
fundamental key to the future of humanity. Those who don't invest today, will be left
behind tomorrow. This has always happened to those who abandoned basic science.

There is no reason to think that this time something different will happen."
34



[ ’ Carlos Wagner
W ¥ November 21, 2013 - Naperville - a

There Is more energy In the Higgs vacuum than in any other known
available energy resource. Although it looks impossible right now,

accessing such energy source opens an impressive range of possibilities
that are hard to conceive today.

In order to understand the secret message encoded in the Higgs field and
find out If this Iis possible, we need to examine the Higgs properties in
great numerical detail, arguably until the absurdity.

This will not demand hundreds of holes in the ground, like the extraction of
other mineral resources do. A single hole may suffice.

Many economic powers are interested in investing in the analysis of the
Higgs properties. Those who don't invest today, will be left behind

tomorrow. This has always happened to those who abandoned basic
science.
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Znet - The Vanilla Proof of Context Network

(nbins ’4 X nch_out)

(n ' 91)
bins (nbms,
=1
I I ConviD :: Convi1D
Mixes all bins to all bins 1
y, = W.x; + b, - Looks at neighboring bins,
Input l R And update the target bin Z values

histogram
(nbins’l)

Conv1d layer details

m

.
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The Vanilla ZNET Performance

ZNET was built with 24 networks, each for a different dynamic range and number of bins
Its performance showed dependence on both the injected signal and the mass

 Bin count dependance - pifferent network for different #bin

e 30,40,...,100 bins data sets —> 8 combinations /70 bins

] Mean — -C.C2, Sigma — 0.7/
. 35000 - —
« Dynamic Range dependance o / \
E 25000 A
 [10,1K], [10,10K], [10,100K] —> 3 combinations g 8 50000+ \
KS é . 15000 -
. Network is not stable ( 10000 - \
SO

Position of the injected signal

;
‘ ! (\ 0 — \\ —
10 20 30 40 50 o]9) 6 4 2 0 P 4 6

30 bins 50 bins

Zpl - Zpredfcted

7.5

Entries

10.0 12.5 15.0 175 20.0 225 25.0
Position of the injected signal

40000 1

30000 -

20000 -

10000 -

— Mean = -0.09, Sigma = 1.27

0 5 10
Zpl - Zpred;cred

Zpi — Zp(ed;cted

40

12 15 20 25 30
Position of the injected signal

35000 A

30000 -

25000 A

20000 A

Entnes

15000 -

10000 A

5000 A

(] Mean =-0.05 Sigma = 0.69
]
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Real Data example : Higgs - diphoton

 ATLAS significance - 4 56
e Znet3- 4.66
@ /' Nel3 bkg
© PL- 376 ZNET 3 .
> 3000 -
* In our case - only one sample of observable was counted, 8
which leads to lower significance N
wn
£ 2000~
 The difference between PL and Znet 3 is expected, within -
the confidence belt LLI
To increase the sensitivity to a Higgs boson signal, -+000-
the events are separated into ten mutually exclusive cat- = 2
egories having different mass resolutions and signal-to- 8' 100
backgroundratios. o . o \* . °
' ® e ® e ® .
b 0 . ° ¢ ¢ . ®
c e ° g
g e ®| °
T
— max Az = 4.6
8 —_— max Zo = 3.7
-
© 25 1
=
S — ; =
\s=7TeV: Ldt=4810" 2 50.0-
10° s=8TeV. JLdt=59f0" N
10790 | | | | | | 100 110 120 130 140 150 160
41 mass [GeV]

[4] http://arxiv.org/abs/arXiv:1207.7214
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