Crisis in flavour physics?

What we promised in 2000:
The B factory experiments BaBar and Belle will reveal indirect effects of new physics mediated by the BSM particles to be discovered afterwards by the LHC.
\longrightarrow turned out true, but not in the desired sense
But: flavor anomalies
3.2σ discrepancy in combination of $B \rightarrow D \tau \nu, B \rightarrow D^{*} \tau \nu$ branching fractions, supported by $B_{c} \rightarrow J / \psi \tau \nu$ and D^{*} polarization data, built up since 2012, seen by BaBar, Belle, LHCb
\longrightarrow new physics in $b \rightarrow c \tau \nu$?
NP scenarios favored over Standard Model by up to 5.6σ in combination of several observables in $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$and $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$,
built up in LHCb data since 2013
\longrightarrow new physics in $b \rightarrow s \mu^{+} \mu^{-}$and $b \rightarrow s e^{+} e^{-}$?

Crisis in flavour physics?

Predictions from the 1990s: $b \rightarrow c \tau \nu$ probes a charged Higgs boson H^{+}
$b \rightarrow s \mu^{+} \mu^{-}$and $b \rightarrow s e^{+} e^{-}$probe γ, Z or Z^{\prime} vertices or box diagrams, with everyone assuming universal couplings to e and μ
Postdictions favored until 2022: leptoquarks with masses around 3 TeV for $b \rightarrow c \tau \nu$

$$
\text { and } 30 \mathrm{TeV} \text { for } b \rightarrow s \mu^{+} \mu^{-} \text {and } b \rightarrow s e^{+} e^{-} \text {. }
$$

Why? leptoquarks have a sufficiently small effect on B mixing, H^{+}explanation in conflict with B_{c} lifetime and LHCb claimed violation of lepton-flavor universality in $b \rightarrow s \mu^{+} \mu^{-}$vs. $b \rightarrow s e^{+} e^{-}$
2012: data on $B \rightarrow D^{(*)}$ shifted $\longrightarrow H^{+}$explanation revived lepton-flavor universality restored in $b \rightarrow s \mu^{+} \mu^{-}$vs. $b \rightarrow s e^{+} e^{-}$after LHCb corrected a bug in the electron ID

Model classes proposed before the measurements are back in the game.

