CI final design review 18/01/2023

Temperature Monitoring System

A. Cervera, J. Capó, M. García (IFIC-Valencia)

X. Pons (CERN)

Motivation

- Purpose is twofold:
 - Monitoring: health of cryostat and LAr recirculation system, APA frame gradient during cool-down and filling.
 - Calibration: Predict electron lifetime everywhere in the cryostat using CFD simulations with input from temperature, purity, level and pressure

E. Voirin DUNE-doc-1046-v2

There is a clear correlation between temperature and purity

System design

EDMS documents

Design Documents: https://edms.cern.ch/project/CERN-0000237151

- 1)Design Report: <u>https://edms.cern.ch/document/2812057/1</u>
- 2)Mechanical Models: <u>https://edms.cern.ch/document/2811665/1</u>
- 3)Mechanical Drawings: <u>https://edms.cern.ch/document/2811661/1</u>
- 4)Board Schematics and Layouts: <u>https://edms.cern.ch/document/2813822/1</u>
- 5)Board Bill of Materials (BOMs): <u>https://edms.cern.ch/document/2812877/1</u>
- 6)Grounding & Shielding Plan: <u>https://edms.cern.ch/document/2811678/1</u>
- 7)Specification of Electrical Connections: <u>https://edms.cern.ch/document/2812051/1</u>
- 8)Readout System Specification: https://edms.cern.ch/document/2813399/1

System description

- As described in the updated TDR section (EDMS 2812057) the TMS for DUNE FD1 has several subsystems.
- The main system are precision RTDs on APAs (450 sensors), which will monitor the temperature with mK precision near the active volume
- This is complemented by several other sets of precision RTDs located at singular locations (LAr inlets, LAr pumps, Purity Monitors, 32 sensors)
- Standard RTDs will monitor the vertical gradient on the membrane wall (26 sensors) and the APA frames (150 sensors) during cool-down and filling
- Finally, a mixture of precision and standard RTDs will monitor the vertical gradient on the gas phase and its proximities (swallow depth in LAr) with the so-called gas arrays (10 arrays with 18 RTDs each)

System description

	Purity Monitors	LAr Inlets + Pipes	APAs	ullage	T-Gradients	pumps	wall
		Pipe sensor					
PD-HD	6	4+8	16	36	48+24 *	2	5
PD-VD		Under	r discussion, mair	nly monitoring, m	inimal calibration	on with CFD	
FD1	12	16+0	600	180	0	8	26
FD2	12	16+0	Fibers instead	180	0	8	26

APA configurations

- Each APA has 4 sensors: 600 in total
- 20 possible configurations:
 - 2 (A or B) x 2 (upper or lower) x 5 (possible locations)
 - Half APAs will be of type A and half of type B (450 LAr and 150 frame)

Type B: 4 LAr Type A: 2 frame + 2 LAr

7

Non-APA sensors

This is the distribution on non-APA sensors

Inlet sensor

Gas array (18 sensors in each array)

P pump sensor

Wall sensors (13 sensors in each array)

PrM PrM sensors (4 units in each array)

System components I

- Common to all subsystems:
 - RTDs: precision (Lakeshore PT103) and standard (RS PRO)
 - Connectors on sensor side: IDC-4 (Molex)
 - Cold Cables: Tempsens 4-twisted wire, with EMC shielding and teflon jacket
 - Warm Cables (24 wires) and connectors (SUBD-25): standard at CERN
 - Readout: CERN custom made multiplexing card + NI modules (ADC, FPGA, Controller)

DEEP UNDERGROUND NEUTRINO EXPERIMENT

System components II

- Anchoring mechanism:
 - Different for each subsystem
- Connectors on cold flange side:
 - **APA sensors**: Hirose circular 12-pin connector (same as PDS)
 - non-APA sensors: SUBD-25
- Intermediate connectors:
 - APA sensors: Hirose circular 12-pin connector (same as PDS)
 - non-APA sensors: none
- Sensor capsule:
 - only for pump sensors

APA sensors hardware

RTD cables

passthrough cables

(Installed in upper APA to readout lower APA in the same doublet)

One circular connector for 2 RTDs

Grounding

 Follow recommendations from this engineering note in DocDB#1953 and https://edms.cern.ch/ document/2811678/1

Grounding Points

- 1. Cabling
 - a.
- Passive elements 2.
 - a.
- Isolated Passive Sensor

Engineering Note

Date: 11.21.16 **Rev Date:**

Project: ProtoDUNE Doc. No: DUNE DocDB#1953, SBN DocDB#1431 Team: L. Bagby, T. Shaw

Subject: ProtoDUNE/SBND Detector Sensor Guidance

Twisted pair cables should be used to bring signals into and out of the cryostate. The shield of the external cables should be terminated at the signal conditioning electronics crate. It is recommended that the internal cable's shield should be terminated on the inside of the cryost.

RTD elements should be affixed within the cryostat such that neither terminal touch the detector or membrane wall. Two, three, or four wire devices may be used. All leads enter the cryostat on individual pins.

Cables for APA sensors: upper APA

 Cable shields grounded independently down to the flange using pins 1 and 9 in circular connectors

Cables for APA sensors: lower APA

passthrough cable sent with upper set

Cables for no-APA sensors

- sensors
- 6 RTDs are connected to a SUBD-25 female connector
- Each sensor uses 4 wires
- Grounding:
 - Cable shield connected to **SUBD-25 connector shell**
 - Cable shield floating at sensor side

This document shows the wire layout and grounding scheme for non-APA

15

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Drawing Number: Of

13

Block diagram for non-APA sensors

Noise induced by APA sensors on CE

- <u>https://edms.cern.ch/ui/file/2811678/1/DUNE_TMS_noise_in_APAS.pdf</u>
- Demonstrated in the cold box that temperature sensors on APAs do not induce noise on Cold Electronics

QA/QC

EDMS documents

QA/QC Documents: https://edms.cern.ch/project/CERN-0000237156

- 1)QA/QC plan: <u>https://edms.cern.ch/document/2811710/1</u>
- 2)Prototyping plan: <u>https://edms.cern.ch/document/2811709/1</u>
- 3)ProtoDUNE lessons-learned: <u>https://edms.cern.ch/document/2812052/1</u>

Lessons learned from ProtoDUNE-SP

- <u>https://edms.cern.ch/document/2812052/1</u>
- Sensors on inlets should be directly exposed to the incoming LAr —
- RTD cables do not show significant contraction in LAr
 - slack can be reduced
- Outer teflon jacket of RTD cables does not deteriorate
 - cables can be safely routed in bundles
- RTDs near the surface show a rather chaotic behaviour
 - Not worth of dedicated horizontal arrays near the surface -
- Need of additional systems to farther constraint CFD
 - LAr inlets, LAr pumps, PrMs, APAs

QA/QC plans

- <u>https://edms.cern.ch/document/2811710/1</u>
- There will be tests on each element of the chain

readout warm cable assembly

cold cable assembly

RTD board assembly

QA/QC: RTD board assembly

- Laboratory calibration in LN2 to:
 - Find calibration constant for each RTD
 - Identify RTDs being defective or out of specifications
 - Identify failures in the IDC-4 connector or soldering of the connector/sensor to the board

QA/QC: Cold Cable assembly

- cold flange side
- or mapping.

hirose 12-pin connector

Includes the cable board assembly, the cable it self and the connector on the

 In all cases, the full chain with an RTD at the end is tested in LN2 to ensure temperature readings are not affected by defective cable soldering, crimping

QA/QC: Readout

the other side, to tests 6 channels simultaneously.

 Each channel of the readout system will be tested with fix 20 ohms precision resistors to verify the RMS of equivalent temperature readings (76 K) does not exceed 0.5 mK. This is done with a dedicated assembly of 6 cables with a single SUBD-25 connector in one side and 6 cable boards assemblies on

Prototyping I

- <u>https://edms.cern.ch/document/2811709/1</u>
- All systems have been prototyped for ProtoDUNE-HD

<u>11709/1</u> or ProtoDUNE-HD

S	gas arrays	pumps	wall
	<image/>	<image/>	
	36	2	5
	Yes	NO	Yes

Prototyping II

- To be prototyped well in advance at IFIC
- LAr
 - designing te one for te RTDs

Anchoring mechanism in FD1 will differ for some subsystems.

• gas arrays: In PH-HD thy are suspended from the GP support beams. In FDs, DSS is probably a better choice

- inlet sensors: LAr inlets in PD-HD are at the pipe's edge, while in FD1/FD2 consist in small openings along the pipe. Split clamps can still be used but the sensor support should be such that the sensor is directly exposed to the incoming

PrM sensors: In PD-HD they 40 mm split clamps are used. The support structure for te PrM needs to be finalized before

Interface documents

EDMS documents

Interface Documents: https://edms.cern.ch/project/CERN-0000237155

- 1)CALCI/APA Interface: <u>https://edms.cern.ch/document/2145136/5</u>
- 2)CALCI/PDS Interface: <u>https://edms.cern.ch/document/2145137/3</u>
- 3)CALCI/TPC-ELEC Interface: <u>https://edms.cern.ch/document/2145138/3</u>
- 4)CALCI/HV Interface: https://edms.cern.ch/document/2145142/2
- 5)CALCI/DAQ Interface: <u>https://edms.cern.ch/document/2088741/2</u>
- 6)CALCI/Computing Interface: <u>https://edms.cern.ch/document/2145159/2</u>

Other documents are from CISC times and need to be updated

Installation

EDMS documents

Installation Documents: https://edms.cern.ch/project/CERN-0000237154

1)DUNE Installation plan: <u>https://edms.cern.ch/document/2811714/1</u>

2)APA Temperature Sensor Mounting Plan: <u>https://edms.cern.ch/document/2811713/1</u>

Installation

- An overview of the installation plan is available at <u>EDMS 2811714</u>
 - No details available at the moment for most systems (see below some examples)
- Installation of sensors on APAs is covered in more detailed in a separated document (EDMS 2811713)
- APA production started in March and the procedure has been exercised

The different subsystems composing the Temperature Monitoring System (TMS) will be installed at different stages of the DUNE-FD1 installation.

APA sensors

Installation of RTDs on APAs occurs during APA manufacturing process at APA factories. The document at https://edms.cern.ch/document/2811713/1 describes the installation procedure for Temperature sensors on the APAs.

Purity monitor sensors

In DUNE FD1 there will be two sets of two PrMs in opposite cryostat corners. Precision RTDs will be installed below and above each PrM before PrMs are inserted into the cryostat. Cable routing and flange will be the same as for PrMs.

Gas arrays

Ten gas arrays with 18 sensors each will be preassembled at IFIC and installed above the top ground planes. The anchoring system for those devices is still under discussion. Ideally the system will use the DSS, such that its installation can be decoupled from the one of the detector.

DUNE FD1 Temperature Monitoring System installation plan

Tracking

EDMS documents

Previous Review Documentation: https://edms.cern.ch/project/CERN-0000237158

- 1)Preliminary Design Review Closeout: <u>https://edms.cern.ch/document/2796075/1</u>
- 2)PDR Recommendation Tracking: <u>https://edms.cern.ch/document/2801352/1</u>

Recommendation 1

- generated by the TPC electronics on the temperature measurements, including additional heat sources (active electronics for the photon detectors constrain via high precision RTDs the CFD simulations at the few mK level.
- Answer: ProtoDUNE-SP CFD simulations have been performed with maps with electronics on/off and recirculation on/off are planned

Recommendation: Continue to work on understanding the impact of heat

and heat dissipation in the cables for the FEMBs). Multiple scenarios should be investigated (recirculation on/off and TPC electronics completely on, partially on, completely off) to understand whether it is really feasible to

different heat values from the cold electronics. Variations on the temperature gradients are small. In protoDUNE-HD the measurement of temperature

Electronic heat variations

• CFD simulation produced by SDSU group and comparison with real data

	Hawaii	Valencia
Baseline	Havaii 47.466 47.500	Valencia Witer 625 W7 7 W7
Electronic Heat	Newali	Valencia
Minus 10% Watts	87.600 87.600 87.600 87.600 87.600 1 2 3 4 5 6 7 Height (m)	87.600 87.600 87.600 87.600 87.600 1 2 3 4 5 6 7 Height (m)
Electronic Heat	Newali	87.605 T
Minus 20% Watts	87.680 87.635 67.635 87.605 87.605 87.600 87.600 1 2 3 4 5 6 7 Hoight (m)	AT 680 AT 675 (0) 60 00 00 00 00 00 00 00 00 00 00 00 00
Electronic Heat	NT.600	87.685 Valencia
Minus 30% Watts	87.600 87.605 87.600 87.600 87.600 87.600 1 2 3 4 5 6 7	87.665 87.655 10 00000000000000000000000000000000000

χ^2 comparisons

$$\begin{split} X_{H}^{2} &= \sum \left(\frac{\left(T_{Experiment,Hawaii} - T_{CFD,Hawaii}\right)^{2}}{\left(\sigma_{CFD,Hawaii}\right)^{2} * N_{Hawaii}} \right) \\ X_{V}^{2} &= \sum \left(\frac{\left(T_{Experiment,Valencia} - T_{CFD,Valencia}\right)^{2}}{\left(\sigma_{CFD,Valencia}\right)^{2} * N_{Valencia}} \right) \end{split}$$

Recommendation 2

- Recommendation: Tests with the TPC readout electronics should be RTDs do not induce electronics noise
- with no impact on the cold electronics noise

performed well ahead of the second run of ProtoDUNE to ensure that the

Answer: RTDs on the APAs have been extensively tested in the cold boxes

Cost/Schedule documents

EDMS documents

Cost/Schedule Documents: https://edms.cern.ch/project/CERN-0000237157

1)Cost Tables: <u>https://edms.cern.ch/document/2812053/1</u> 2)Schedule documents: <u>https://edms.cern.ch/document/2814588/1</u>

No Recent overall schedule documents available at this time, only for APA production

M&S costs

- Summary table for FD1 and FD2
- More details available in EDMS

			Summary table												
	Unit price	Unit price (prec. sensors)	Unit price (st. sensors)	Unit price (rest)	# units	total cost	funding source	unit definition							
CI:Temp sensors FD1															
Sensors on APAs - B - UPPER	\$829	\$678	\$0	\$341	38	\$31,498	IFIC	APA with 4 LAr sensors							
Sensors on APAs - B - LOWER	\$817	\$678	\$0	\$329	38	\$31,041	IFIC	APA with 4 LAr sensors							
Sensors on APAs - A - UPPER	\$463	\$339	\$12	\$302	37	\$17,141	IFIC	APA with 2 LAr sensors and 2 frame sensor							
Sensors on APAs - A - LOWER	\$451	\$339	\$12	\$290	37	\$16,696	IFIC	APA with 2 LAr sensors and 2 frame sensor							
Sensors on APAs: passthrough cable	\$90	\$0	\$0	\$90	75	\$6,759	IFIC	4 cables integrated in upper APA to readout							
Sensors on APAs: cable to PDS flange	\$182	\$0	\$0	\$182	75	\$13,645	IFIC	8 cables per doublet, from upper APA to PD							
Sensor on LAr inlet	\$203	\$169	\$0	\$81	16	\$3,245	IFIC	single sensor							
Sensor on LAr pump	\$540	\$169	\$0	\$419	8	\$4,323	IFIC	single sensor							
Sensors on PrMs	\$194	\$169	\$0	\$72	8	\$1,554	IFIC	single sensor							
Sensors on wall	\$28	\$0	\$6	\$69	8	\$222	IFIC	single sensor							
Gas array for ullage	\$1,106	\$678	\$86	\$1,199	10	\$11,061	IFIC	array with 4 precision sensors and 14 stand							
Readout channel	\$48	\$0	\$0	\$48	820	\$39,034	DUNE Project	single sensor							
Total Temp Sensors FD1 (no spares)						\$176,220									
		\$10,200													
CI:Temp sensors FD2						[3]									
Sensor on LAr inlet	\$203	\$169	\$0	\$28	16	\$3,245	IFIC	single sensor							
Sensor on LAr pump	\$540	\$169	\$0	\$366	8	\$4,323	IFIC	single sensor							
Sensors on PrMs	\$194	\$169	\$0	\$20	8	\$1,554	IFIC	single sensor							
Sensors on wall	\$28	\$0	\$6	\$22	8	\$222	IFIC	single sensor							
Gas array for ullage	\$1,106	\$678	\$86	\$218	10	\$11,061	IFIC	array with 4 precision sensors and 14 stand							
Readout channel	\$48	\$0	\$0	\$0	212	\$10,092	DUNE Project	single sensor							
Total Temp Sensors FD2 (no spares)						\$30,497									

CI:Tem	p sensors	FD2
--------	-----------	-----

Labor cost

• Only for FD1 and PD-HD

Subsystem Detector

Category

Scientist

Postdocs Graduate Stud Undergraduate Engineers Technicians Sub-total Scientist Postdocs Graduate Stud Undergraduate Engineers Technicians Sub-total Total Note: 1 FTE

Subsystem Detector

Category

Scientist

Postdocs Graduate Stud Undergraduate Engineers Technicians Sub-total Scientist Postdocs Graduate Stud Undergraduate Engineers Technicians

Sub-total

Total Note: 1 FTE

า	Tempe	erature s	sensors						
	DUNE	far dete	ector #1						
						1	Person-nower		
	# of FTE	How long? (years)	Total hours	Institute	Country	Funding Source 1	Funding Source 2	Funding Source	What Tasks?
	0,2	2	707,2	IFIC	Spain	non-US: IFIC			Design, assembly, installation, commissioning, simulation and
	0,2	2	707,2	IFIC	Spain	non-US: IFIC			Assembly, installation, commissioning, simulation and analysis
lents	0,4	3	2121,6	IFIC	Spain	non-US: IFIC			Assembly, installation, commissioning, simulation and analysis
es			0	IFIC	Spain	non-US: IFIC			Assembly, installation, commissioning, simulation and analysis
	0,1	1	176,8	IFIC	Spain	non-US: IFIC			Design, assembly and installation
	0,2	1	353,6	IFIC	Spain	non-US: IFIC			Construction, assembly and installation
			4066.4	IFIC	Spain				
			0	SDSU	USA				
			0	SDSU	USA				
lents	0.5	2	1768	SDSU	USA	US: DUNE Project			Simulations and analysis
25			0	SDSU	USA				
	0.1	2	353.6	SDSU	USA	US: DUNE Project			Simulations and analysis
	0,1		0	SDSU	USA				
			2121.6	SDSU					
			6188	3030	004				
=	1768	hours/v	ear at Ferm	ilah					
	1700	nours/y							
	-								
1	Tempe	erature s	sensors						
	ProtoL	DUNE-H	D						
			1	1	1	1	Person-power	1	1
	# of FTE	How f long? (vears) Total hours		Institute Country		Funding Source 1	Funding Source 2	Funding Source 3	What Tasks?
	0,1	1	176,8	IFIC	Spain	non-US: IFIC			Design, assembly, installation, commissioning, simulation and
			0	IFIC	Spain	non-US: IFIC			Assembly, installation, commissioning, simulation and analysis
lents	0,05	1	88,4	IFIC	Spain	non-US: IFIC			Assembly, installation, commissioning, simulation and analysis
es			0	IFIC	Spain	non-US: IFIC			Assembly, installation, commissioning, simulation and analysis
	0,03	1	53,04	IFIC	Spain	non-US: IFIC			Design
	0,1	1	176,8	IFIC	Spain	non-US: IFIC			Construction
			495.04	IFIC	Spain				
			0	SDSU	USA				
			0	SDSU	USA				
lents	0.5	1	884	SDSU	USA	US: DUNE Project			Simulations and analysis
es	0,0		0	SDSU	USA				
	0.1	1	176.8	SDSU	USA	US: DUNE Project			Simulations and analysis
			0	SDSU	USA				
			1060.8	SDSU	USA				
			1555.84	0000	00/1				
=	1768	hours/v	ear at Ferm	ilab					
-	1700								

analysis
analysis

APA TMS production status and schedule

APA ID	UPPER/ LOWER	ТҮРЕ	CALCI config	APA Configuration		Sensor 1		Sensor 2		Sensor 3 Sensor 4			Cal bunc	able Cable dle B bundle C		ble lle C	PT cable bundle	Production date	Shipping date	Delivery date	Needed date	APA Factory			
					cable length	sensor sensor	cable length	sensor type	sensor ID	cable length	sensor type	sensor ID	cable length	sensor type	sensor ID	Pin 1	Pin 9	Pin 1	Pin 9						
	UPPER	A	UA-2	U-F-3-12-F	1017	F1 STS 00	1705	LAr3	48178	4762	LAr12	48179	6429	F2	STS 002	F1	LAr3	LAr12	F2	2	2022/02/11	2022/02/12	2022/02/14	2022/01/31	Daresbur
2	LOWER	A	LA-2	L-F-7-16-F	5968	F1 STS 004	4485	LAr7	48181	1629	LAr16	48180	977	F2	STS 003	LAr7	F1	F2	LAr16		2022/03/09	2022/03/11	2022/03/17	2022/01/31	Daresbur
(UPPER	В	UB-2	U-1-6-11-16	1101	LAr1 4818	2 2803	LAr6	48183	4269	LAr11	48184	6044	LAr16	48185	LAr6	LAr11	LAr1	LAr16	2	2022/03/10	2022/03/11	2022/03/17	2022/03/07	Daresbur
4	LOWER	В	LB-2	L-3-8-13-18	5701	LAr3 4818	4061	LAr8	48188	2705	LAr13	48187	977	LAr18	48186	LAr18	LAr3	LAr13	LAr8		2022/03/10	2022/03/11	2022/03/17	2022/03/07	Daresbur
Ę	UPPER	В	UB-1	U-1-5-10-15	1101	LAr1 4819	2383	LAr5	48191	4084	LAr10	48192	5551	LAr15	48193	LAr10	LAr15	LAr1	LAr5	2	2022/05/03	2022/05/03	2022/06/03	2022/04/19	Daresbur
	LOWER	В	LB-1	L-4-9-14-18	5277	LAr4 4819	3921	LAr9	48196	2193	LAr14	48195	977	LAr18	48194	LAr18	LAr14	LAr9	LAr4		2022/05/03	2022/05/03	2022/06/03	2022/04/19	Daresbur
1	UPPER	A	UA-1	U-F-1-10-F	1017	F1 STS 00	5 1101	LAr1	48198	4084	LAr10	48199	6429	F2	STS 006	F1	LAr10	LAr1	F2	2	2022/05/03	2022/05/03	2022/06/03	2022/04/19	Daresbur
5	LOWER	A	LA-1	L-F-9-18-F	5968	F1 STS 00	3921	LAr9	48201	977	LAr18	48200	977	F2	STS 007	LAr18	F1	F2	LAr9		2022/05/03	2022/05/03	2022/06/03	2022/04/19	Daresbur
9	UPPER	В	UB-3	U-2-7-12-17	1520	LAr2 4806	2987	LAr7	48061	4762	LAr12	48062	6229	LAr17	48063	LAr2	LAr7	LAr12	LAr17	2	2022/06/10	2022/06/13	2022/06/03	2022/05/30	Daresbur
1(LOWER	В	LB-3	L-2-7-12-17	5841	LAr2 4847	4485	LAr7	48476	2845	LAr12	48204	1489	LAr17	48202	LAr7	LAr2	LAr17	LAr12		2022/06/10	2022/06/13	2022/06/03	2022/05/30	Daresbur
11	UPPER	A	UA-3	U-F-5-14-F	1017	F1 STS 009	2383	LAr5	48480	5366	LAr14	48481	6429	F2	STS 010	F1	LAr14	LAr5	F2	2	2022/06/10	2022/06/13	2022/06/03	2022/05/30	Daresbur
12	LOWER	A	LA-3	L-F-5-14-F	5968	F1 STS 012	2 5137	LAr5	48483	2193	LAr14	48482	977	F2	STS 011	LAr14	F1	F2	LAr5		2022/06/10	2022/06/13	2022/06/03	2022/05/30	Daresbur
1	UPPER	B	UB-4	U-3-8-13-18	1705	LAr3 4848	<u>3480</u>	LAr8	48487	4946	LAr13	48488	6648	LAr18	48489	LAr3	LAr18	LAr8	LAr13	2	2022/10/11	_ 02/12/2022	05/12/2022	2022/07/11	Daresbur
_ 14	LOWER	B	LB-4	L-1-6-11-16	6353	LAr1 4849	6 4625	LAr6	48494	3296	LAr11	48493	1629	LAr16	48492	LAr11	LAr6	LAr16	LAr1	_	2022/10/11	_ 02/12/2022	05/12/2022	2022/07/11	Daresbur
1:		A	UA-4	U-F-7-16-F	1017	F1 STS 013	3 2987	LAr7	48672	6044	LAr16	48674	6429	F2	STS 014	F1	LAr7	LAr16	F2	2	2022/10/11	_ 02/12/2022	05/12/2022	2022/07/11	Daresbur
10		A	LA-4	L-F-3-12-F	5968	F1 S1S 010	5/01	LAr3	48798	2845	LAr12	48675	977	F2	<u>SIS 015</u>	LAr3	<u>F1</u>	F2	LAr12		2022/10/11	_ 02/12/2022	05/12/2022	2022/07/11	Daresbur
- 14		B	UB-5	0-4-9-14-18	2198	LAr4 4879	3665	LAr9	48726	5366	LAr14	48727	6648	LAr18	48728	LAr14	LAr18	LAr4	LAr9	2	2022/10/11	_ 02/12/2022	05/12/2022	2022/08/22	Daresbur
10		B	LB-5	L-1-5-10-15	0353	LAFI 48734	+ 5137	LAr5	48/32	3409	LAr10	48730	2053	LAr15	48729	LAP15	LAr10	LAr5	LAPI	~	2022/10/11	_ 02/12/2022	05/12/2022	2022/08/22	Daresbur
_ 1		A		U-F-9-18-F	5069	FI 515 01	3000	LAr9	48730	2400	LAF18	40/40	0429	F2 52	SIS 010			LAIS		2	2022/10/11	_ 02/12/2022	05/12/2022	2022/08/22	Daresbur
					1101	L Ar1 4975	00000	LAL	40750	3409	LAr10	40/49	5551	Γ <u></u> ΓΔr15	10020	LAr10		Γ <u></u> Δr1	LAL	2	2022/10/11	_ 02/12/2022	05/12/2022	2022/06/22	Daresbur
				0-1-5-10-15	5077	LATI 4075	2 2000	LAID	40700	4004	LAr10	40037	077		40030		LAITS			2	2022/10/11	_ 02/12/2022	05/12/2022	2022/09/03	Daresbur
24			LD-1	L-4-9-14-10	5211	LA14 40044	4 3921	LAIS	40043	2193	LAr14	40042	977	LANO	40040		LAF14	LAIS	LAI4		2022/10/11	_ 02/12/2022	05/12/2022	2022/09/03	Daresbur
2		A	UA-1	U-F-1-10-F	1017	F1 S1S 02	1101	LAr1	48846	4084	LAr10	48847	6429	FZ	STS 022	F1	LAPTO	LAM	F2	2	2022/10/11	02/12/2022	05/12/2022	2022/09/03	Daresbur
24		A		L-F-9-18-F	1017	F1 515 024	1705	LAr9	48850	4762		48849	6420	F2	515 023		F1		LAI9 E2	<u></u>	•			2022/09/03	Daresbur
		A	UA-2		5069		1705	LAIS		4/02	LATIZ		0429	F2				LAITZ		2	•			2022/11/14	Daresbur
20		R R	LA-2	L-F-7-10-F	1101		2803			1029	LAITO		6044	<u>Γ</u> ΓΔr16				Γ <u></u> Δr1	LAITO	2	•			2022/11/14	Dearesburg
25		B	1 B-2	L_3_8_13_18	5701		4061	LAIO LAr8		2705			977						LAITO LAr8	2	•			2022/11/14	Dearesbur
20		B	UB-3	U-2-7-12-17	1520	LAr2	2987	LAr7		4762	L Ar12		6229	L Ar17		LAr2	L Ar7	L Ar12	I Ar17	2	•			2023/01/09	Dearesbur
		R	I R-3	-2-7-12-17	5841	LAr2	4485	LAr7		2845	Ar12		1489	LAr17		LAr7	LAr2	Ar17	LAr12		•			2023/01/09	Dearesbur
34	LIPPER	Δ		U-E-5-14-E	1017	E/ (12	2383	L Ar5		5366			6429	E7(11)		E/ (1/			E7 (172	2	,			2023/01/09	Dearesbur
- 31			1 4-3	L-E-5-14-E	5968	E1	5137			2103			977	F2		ι ι Ι Δr1/		E7	ι Z	2	•			2023/01/03	Dearesbur
		R	LA-3	_3_8_13_18	1705	LAr3	3/180	LAIS		4946	Δr13		6648	Γ <u>2</u>			Δr18	1 Ar8		2				2023/02/20	Dearesbur
- 3		R	I R-4	I -1-6-11-16	6353	LAr1	4625	L Ar6		3296	LAr11		1629	LAr16		I Ar11	L Ar6	LAr16		2	-			2023/02/20	Dearesbur
3	UPPER		UA-4	U-F-7-16-F	1017	F1	2987	LAr7		6044	LAr16		6429	F2		E7.1	LAr7	LAr16	F2	2				2023/02/20	Dearesbur
- 36	LOWFR	A	I A-4	L-F-3-12-F	5968	F1	5701	LAr3		2845	LAr12		977	F2		LAr3	E/ (1/	E	LAr12					2023/02/20	Dearesbur
3	UPPER	B	UB-5	U-4-9-14-18	2198	LAr4	3665	LAr9		5366	LAr14		6648	LAr18		LAr14	LAr18	LAr4	LAr9	2				2023/04/03	Dearesbur
38	LOWER	B	LB-5	L-1-5-10-15	6353	LAr1	5137	LAr5		3409	LAr10		2053	LAr15		LAr15	LAr10	LAr5	LAr1					2023/04/03	Dearesbur
30		Δ	UA-5	U-F-9-18-F	1017	F1	3665	L Ar9		6648	Ar18		6429	E2		F1	L Ar18	L Ar9	F2	2				2023/04/03	Dearesbur
4(I A-5	L-F-1-10-F	5968	F1	6353	L Ar1		3409	LAr10		977	F2		LAr10	E/ 110	E7(10	I Ar1	2	<u> </u>			2023/04/03	Dearesbur
-		, , , , , , , , , , , , , , , , , , ,			0000	• •	0000			0100	2,		011											2020/01/00	2 54 50 54

Overview

Overview

- TMS production (except APA sensors) is still far in time
- This review has been extremely useful to formalize TMS activities and have the appropriate written documentation. Since there is only one group working on the TMS, this is not always easy.
- We know some documents are missing and some others need more details
- We will be happy to receive recommendations and implement them ASAP

