
Unintended user data deletion from dCache

Robert Illingworth

FIFE

3 Feb 2023



Upgrade to ifdhc_config v2_6_16 !

Short version

3 Feb 23 R Illingworth | Unintended data deletion2



Around the end of October (ifdhc_config v2_6_10) we introduced a bug to file 
transfers where doing

ifdh cp file /pnfs/path/to/dir

would remove the target directory, and its contents. This is clearly a major issue. 
Data removed from (non-tape-backed) dCache this way is not recoverable.

(Note that this would not have worked before either, as copying to a directory requires 
the -D option, but it wouldn’t have overwritten anything).

For reasons we don’t entirely understand, this week we suddenly received multiple 
reports of overwritten directories. As far as we have been able to figure out, nothing 
changed recently to make it more likely to occur

More details

3 Feb 23 R Illingworth | Unintended data deletion3



We have identified from logs a (possibly incomplete) list of around 16 users who have 

done this. The scope of the damage likely varies a lot. I know of at least one case 
who overwrote /pnfs/minerva/persistent/users/<username>, which is obviously 

very bad

We expect that in most cases this happened during interactive use, as it’s easy to 
forget the -D. Batch jobs tend to use ”official” scripts that have been tested, and 

already had the correct options, but there was nothing to stop this happening from a 

batch job too

ifdhc_config v2_6_16 changes the copy options so the overwrites will no longer 

happen even if the -D option is omitted. (You should still use it, as what does happen 

depends on the underlying transfer protocol)

More details II

3 Feb 23 R Illingworth | Unintended data deletion4



ifdh cp file /pnfs/path/to/dir

ended up as something along the lines of

gfal-copy -f --just-copy file https://.../path/to/dir

--just-copy means skip pre-copy checks and -f is force copy. The unfortunate result of 

this is that it would try writing to the target URL, and if that failed it would issue a 

remove and try again. And it turned out that even without the force option, depending 
on the response code from the server, it could remove the target anyway.

The solution has been to remove the just-copy option, at the cost of an extra check 
for any existing file before the transfer. The reason why it was done this way was that 

with some protocols checking in advance is a very expensive operation. However, 

with WebDAV the check is relatively cheap, and the consequences of not doing it very 

serious

Even more details (for the experts)

3 Feb 23 R Illingworth | Unintended data deletion5



Token authorization provides a way to do finer grained permissions. It’s not hard to 

imagine a similar problem that involved mass deletion of data through leveraging the 

scalability of thousands of grid jobs.

Processes should run with the minimum permissions to do the task required. If grid 

jobs only have the power to upload files, and not delete them, there’s no way for jobs 

run amok to remove all your experiment production data – something that is possible 
with our current proxy-based model.

We can’t eliminate human error entirely, and with the complexities of our systems we 
can’t be sure that we can avoid similar bugs in the future, but we can try to mitigate 

possible damage done by using features such as token capabilities

Parting thoughts (lessons learned?)

3 Feb 23 R Illingworth | Unintended data deletion6


