The Higgs Boson (?) Beyond the LHC: Theory

Chris Quigg
Fermi National Accelerator Laboratory

Higgs Factory 2012 · Fermilab · 14 November 2012
QCD + Electroweak Theory +

Pointlike \((r \leq 10^{-18} \text{ m}) \) quarks and leptons

Interactions: \(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \) gauge symmetries
QCD + Electroweak Theory +

Pointlike \((r \leq 10^{-18} \text{ m})\) quarks and leptons

Interactions: \(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y\) gauge symmetries
A hitherto unknown agent hides the electroweak symmetry

- A force of a new character, based on interactions of an elementary scalar
- A new gauge force, perhaps acting on undiscovered constituents
- A residual force that emerges from strong dynamics among electroweak gauge bosons
- An echo of extra spacetime dimensions
Gauge symmetry (group-theory structure) tested in

\[e^+ e^- \rightarrow W^+ W^- \]
Electroweak symmetry validated at LEP

![Graph showing σ_{WW} dependence on √s (GeV)]

- Red dashed line: No ZWW vertex
- Yellow dotted line: Only υ_e exchange
- Blue solid line: Standard model

LEP data

- Purple dots: LEP data

02/17/2005
Standard-model Higgs boson hides electroweak symmetry, gives masses to W^\pm and Z^0, ensures good high-energy behavior.

Something must do this job
Origin of fermion mass?

By decree, Weinberg & Salam add interactions between fermions and scalars that give rise to quark and lepton masses.

\[\zeta_e \left[(\bar{e}_L \Phi)e_R + \bar{e}_R (\Phi^\dagger e_L) \right] \quad \leadsto \quad m_e = \frac{\zeta_e v}{\sqrt{2}} \]
Origin of fermion mass?

By decree, Weinberg & Salam add interactions between fermions and scalars that give rise to quark and lepton masses.

\[
\zeta_e \left[(\overline{e_L} \Phi) e_R + \overline{e_R} (\Phi^\dagger e_L) \right] \sim m_e = \zeta_e v / \sqrt{2}
\]

picked to give right mass, not predicted

fermion mass implies physics beyond standard model
By decree, Weinberg & Salam add interactions between fermions and scalars that give rise to quark and lepton masses.

\[\zeta_e \left[(\bar{e}_L \Phi) e_R + \bar{e}_R (\Phi^\dagger e_L) \right] \sim m_e = \zeta_e v / \sqrt{2} \]

picked to give right mass, not predicted

fermion mass implies physics beyond standard model

Highly economical, but is it true?
Fermion Masses

Running mass $m(m) \ldots m(U)$
Summer 2012 Discovery Evidence …
Known before today …

<table>
<thead>
<tr>
<th>ATLAS</th>
<th>2011 - 2012</th>
<th>$m_H = 126.0$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W, Z \to bb$</td>
<td>$\sqrt{s} = 7$ TeV: $\int L dt = 4.7$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to \tau\tau$</td>
<td>$\sqrt{s} = 7$ TeV: $\int L dt = 4.6 - 4.7$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to WW^{(*)} \to ll\nu\nu$</td>
<td>$\sqrt{s} = 7$ TeV: $\int L dt = 4.7$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to WW$</td>
<td>$\sqrt{s} = 8$ TeV: $\int L dt = 5.8$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to \gamma\gamma$</td>
<td>$\sqrt{s} = 8$ TeV: $\int L dt = 5.9$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to ZZ^{(*)} \to 4l$</td>
<td>$\sqrt{s} = 7$ TeV: $\int L dt = 4.8$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to ZZ$</td>
<td>$\sqrt{s} = 8$ TeV: $\int L dt = 5.8$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td>$\mu = 1.4 \pm 0.3$</td>
<td></td>
</tr>
</tbody>
</table>

| Signal strength (μ) | -1 | 0 | 1 |

+ Tevatron evidence for $b\bar{b}$
LHC affords multiple looks at the new boson

3 production mechanisms, ≥ 5 decay channels

\[\gamma \gamma, ZZ^*, WW^*, b \text{ pairs, } \tau^+\tau^- \]
Standard-Model Higgs-Boson Branching Fractions

\[\Gamma_H \approx 4.2 \text{ MeV} \]
H → 2 fermions

<table>
<thead>
<tr>
<th>MH</th>
<th>H → bb</th>
<th>H → τ τ</th>
<th>H → μ μ</th>
<th>H → cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GeV]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.5</td>
<td>5.69E-01</td>
<td>+3.3</td>
<td>-3.3</td>
<td>6.24E-02</td>
</tr>
<tr>
<td>126.0</td>
<td>5.61E-01</td>
<td>+3.3</td>
<td>-3.4</td>
<td>6.15E-02</td>
</tr>
<tr>
<td>126.5</td>
<td>5.53E-01</td>
<td>+3.4</td>
<td>-3.4</td>
<td>6.08E-02</td>
</tr>
</tbody>
</table>

H → gauge bosons

<table>
<thead>
<tr>
<th>MH</th>
<th>H → gg</th>
<th>H → γ γ</th>
<th>H → Z γ</th>
<th>H → WW</th>
<th>H → ZZ</th>
<th>Γ_{H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GeV]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[GeV]</td>
</tr>
<tr>
<td>125.5</td>
<td>8.52E-02</td>
<td>+10.2</td>
<td>-9.9</td>
<td>2.28E-03</td>
<td>+4.9</td>
<td>-4.8</td>
</tr>
<tr>
<td>126.0</td>
<td>8.48E-02</td>
<td>+10.1</td>
<td>-9.9</td>
<td>2.28E-03</td>
<td>+4.9</td>
<td>-4.8</td>
</tr>
<tr>
<td>126.5</td>
<td>8.42E-02</td>
<td>+10.1</td>
<td>-9.8</td>
<td>2.28E-03</td>
<td>+4.8</td>
<td>-4.7</td>
</tr>
</tbody>
</table>

H → 4 fermions

<table>
<thead>
<tr>
<th>MH</th>
<th>H → l+ l- l+ l-</th>
<th>H → l+ l- l+ l-</th>
<th>H → e+ e- e+ e-</th>
<th>H → e+ e- μ+ μ-</th>
<th>H → l+ l- ν_1 ν_2</th>
<th>H → l+ l- ν_1 ν_2</th>
<th>H → e+ ν_1 e- ν_2</th>
<th>H → e+ ν_1 e- ν_2</th>
<th>ΔBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=e, μ, τ</td>
<td>l=e, μ</td>
<td>l=e, μ or τ</td>
<td>l=e or μ</td>
<td>ν = any</td>
<td>ν = any</td>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[GeV]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.5</td>
<td>2.89E-04</td>
<td>1.30E-04</td>
<td>3.42E-05</td>
<td>6.21E-05</td>
<td>2.43E-02</td>
<td>2.62E-02</td>
<td>2.62E-03</td>
<td>2.62E-03</td>
<td>4.2</td>
</tr>
<tr>
<td>126.0</td>
<td>3.02E-04</td>
<td>1.36E-04</td>
<td>3.56E-05</td>
<td>6.49E-05</td>
<td>2.53E-02</td>
<td>2.72E-02</td>
<td>2.72E-03</td>
<td>2.72E-03</td>
<td>4.1</td>
</tr>
<tr>
<td>126.5</td>
<td>3.15E-04</td>
<td>1.42E-04</td>
<td>3.72E-05</td>
<td>6.78E-05</td>
<td>2.62E-02</td>
<td>2.83E-02</td>
<td>2.83E-03</td>
<td>2.83E-03</td>
<td>4.1</td>
</tr>
</tbody>
</table>

H → 4 fermions

<table>
<thead>
<tr>
<th>MH</th>
<th>H → l+ l- q q</th>
<th>H → l+ l- q q</th>
<th>H → l+ ν_1 ν_2 q q</th>
<th>H → γ γ q q</th>
<th>H → qqqq</th>
<th>H → fff</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=e, μ or τ</td>
<td>l=e or μ</td>
<td>l=e or μ</td>
<td>ν = any</td>
<td>q = udcsb</td>
<td>f = any type of fermion</td>
<td>ΔBR</td>
</tr>
<tr>
<td>[GeV]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>125.5</td>
<td>3.87E-03</td>
<td>2.58E-03</td>
<td>3.26E-02</td>
<td>7.36E-03</td>
<td>1.14E-01</td>
<td>2.49E-01</td>
</tr>
<tr>
<td>126.0</td>
<td>4.05E-03</td>
<td>2.70E-03</td>
<td>3.38E-02</td>
<td>8.08E-03</td>
<td>1.18E-01</td>
<td>2.59E-01</td>
</tr>
<tr>
<td>126.5</td>
<td>4.23E-03</td>
<td>2.82E-03</td>
<td>3.51E-02</td>
<td>8.44E-03</td>
<td>1.23E-01</td>
<td>2.68E-01</td>
</tr>
</tbody>
</table>
Fully accounts for EWSB (W, Z couplings)?
Couples to fermions?

Top from production, need direct observation for b, τ
Distinguishing SM, bosogamous Higgs bosons

\[\sqrt{s} = 7\text{TeV} \]

\[\Gamma_H \approx 1.1 \text{ MeV} \]
Fully accounts for EWSB (W, Z couplings)?
Couples to fermions?

Top from production,

need direct observation for b, τ

Accounts for fermion masses?

Fermion couplings \propto *masses?*

Are there others?

Quantum numbers?

SM branching fractions to gauge bosons?

Decays to new particles?

All production modes as expected?

Implications of $M_H \approx 126$ GeV?

Any sign of new strong dynamics?
s-channel formation?

$$\sigma_{\text{peak}}(e^+ e^- \to H) = \frac{4\pi}{M_H^2} \cdot \frac{\Gamma(H \to e^+ e^-)}{\Gamma(H \to \text{all})}$$

$$= 4.89 \times 10^{-31} \text{ cm}^2 \left[\frac{\text{100 GeV}}{M_H} \right]^2 \cdot \frac{\Gamma(H \to e^+ e^-)}{\Gamma(H \to \text{all})}$$
s-channel formation?

\[
\sigma_{\text{peak}}(e^+ e^- \rightarrow H) = \frac{4\pi}{M_H^2} \cdot \frac{\Gamma(H \rightarrow e^+ e^-)}{\Gamma(H \rightarrow \text{all})}
\]

\[
= 4.89 \times 10^{-31} \text{ cm}^2 \left[\frac{100 \text{ GeV}}{M_H} \right]^2 \cdot \frac{\Gamma(H \rightarrow e^+ e^-)}{\Gamma(H \rightarrow \text{all})}
\]

\[
\approx 1.5 \times 10^{-39} \text{ cm}^2
\]

\[
\approx 5 \times 10^{-9}
\]
\[\sigma_{\text{peak}}(e^+e^- \rightarrow H) = \frac{4\pi}{M_H^2} \cdot \frac{\Gamma(H \rightarrow e^+e^-)}{\Gamma(H \rightarrow \text{all})} \]

\[= 4.89 \times 10^{-31} \text{ cm}^2 \left[\frac{100 \text{ GeV}}{M_H} \right]^2 \cdot \frac{\Gamma(H \rightarrow e^+e^-)}{\Gamma(H \rightarrow \text{all})} \]

\[\approx 1.5 \times 10^{-39} \text{ cm}^2 \]

\[\sigma_{\text{peak}}(\mu^+\mu^- \rightarrow H) \approx 6.4 \times 10^{-35} \text{ cm}^2 \]

\[\approx 5 \times 10^{-9} \]
Higgsstrahlung

\[\sigma(e^+e^- \rightarrow HZ) = \frac{\pi \alpha^2}{24} \left(\frac{2K}{\sqrt{s}} \right) \frac{(K^2 + 3M_Z^2)}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \frac{(1 - 4x_W + 8x_W^2)}{x_W^2(1 - x_W)^2} \]

\[x_W = \sin^2 \theta_W; \quad K = \text{c.m. momentum} \]
Vector Boson Fusion

The diagram illustrates the process of Vector Boson Fusion, where a lepton (\(\ell\)) and its antiparticle (\(\bar{\ell}\)) collide, forming a virtual Higgs boson (H) and two vector bosons (V). The cross-section of this process is shown as a function of the center-of-mass energy (Ecm) for different masses of the SM Higgs boson. The graph indicates that the cross-section increases with Ecm, peaking at certain values corresponding to different Higgs masses. The graph also shows two curves: one including fusion (dotted line) and one for Higgs boson production only in the Higgs ZZ channel (HZ only, solid line).
Photon–Photon Collisions

\[\sigma(E) = 16\alpha^2 \frac{\Gamma(H^0 \rightarrow \gamma\gamma)}{M_H^3} (2J + 1) \ln^2 \left(\frac{E}{m_e} \right) f \left(\frac{M_H}{2E} \right) \]

\[\rightarrow \gamma\gamma \text{ Collider} \]
Important measurements at any moment depend on what is already known

SM-like or very nonstandard

Discovery of another “Higgs-like object”

Direct evidence for or against new degrees of freedom
Examples of non-standard behavior

Spin $\neq 0$

deviant $\gamma \gamma$ branching fraction

\rightarrow New particles in loops (not too heavy)
Examples of non-standard behavior

Suppression of WW, ZZ modes
Acid test for low-scale technicolor:
Higgs impostor, $\eta_T(126 \text{ GeV})$
+ higher mass (180 GeV?) companion

Eichten, Lane, Martin arXiv:1210.5462

Not a favorable scenario for a Higgs factory!
Examples of non-standard behavior

“Higgs” is not a simple Breit-Wigner, or does not account for all of EWSB

Premium on measuring Γ_H (perhaps 1 GeV), seeking remaining contribution, scanning spectral density

van der Bij, arXiv:1204.3435
An early attempt at a shopper’s guide
Requirements for a shopper’s guide

Clearly stated assumptions

Documented uncertainty estimates

Rich list of observables, including\[\Gamma(\mu\mu), M_H, \Delta M_H, \Delta \Gamma_H, \ldots \]

Rich list of possible machines

A time dimension (linear scale)
Specifying Physics Program & Requirements

Inspired by

<table>
<thead>
<tr>
<th>CTA Physics case: Driver</th>
<th>Sensitivity</th>
<th>Angular Resolution</th>
<th>Energy Resolution</th>
<th>Energy Threshold</th>
<th>Energy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Physics case: Driver</td>
<td>Integrated Luminosity (+ time)</td>
<td>Polarization</td>
<td>Energy Resolution</td>
<td>Energy Threshold</td>
<td>Energy Range</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collateral Measurements: M_W, m_t?

Will it be important to improve on Tevatron + LHC?
Might we live in a metastable vacuum?
We will learn from other quarters …

SM: $\text{BR}(B_s \rightarrow \mu^+ \mu^-) = (3.54 \pm 0.30) \times 10^{-9}$

MSSM: $\text{BR}(B_s \rightarrow \mu^+ \mu^-) \propto \frac{m_b^2 m_t^2}{M_A^4} \tan^6 \beta$
As you elaborate machine concepts …

Important not to narrow the physics vision by pretending we know the answer

- Couplings
- Distributions
- Mass / width

Searches in the Higgs sector

Searches beyond the Higgs sector

Other parameters: M_W, m_t

Back to Z^0?