
CMSSW Framework Status and Roadmap

Matti Kortelainen
CSAID Roadmap meeting
9 March 2023



3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

• David Dagenhart (FNAL)
• Patrick Gartung (FNAL; code profiling, build support)
• Chris Jones (FNAL)
• Matti Kortelainen (FNAL)
• Dan Riley (Cornell)

Current team

2



3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

Event system for collision data
• Hierarchy

– Event: smallest atomic unit of data
– LuminosityBlock

• Collection of Events
• Corresponds to ~23.3 s of data
• Smallest atomic unit for calibration 

Intervals of Validity
– Run

• Collection of LuminosityBlocks
• Corresponds to several hours of data
• E.g. trigger menu does not change

• Orthogonally: ProcessBlock
– Process-level data storage

3

Two subsystems for data 

Event …

LuminosityBlock

… … … … …

Run



3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

EventSetup system for calibration data etc.
• Arbitrary number of Records

– Each Record has its own Interval of Validity (IOV)
• From one Run:Lumi to another Run:Lumi

– Each Record can contain arbitrary number of data products
• New IOV triggers production of new data products in the Record

4

Two subsystems for data 

PixelGainRecord

GeometryRecord

BeamSpotRecord

Lumi 1 Lumi 2 Lumi 3 Lumi 4

Example IOV structure

Lumi 5 Lumi 6



3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

• Multiple Events are processed concurrently (2014)
• Independent modules processing the same Event are run concurrently

– Auto-scheduled modules run concurrently (2014)
– All trigger Paths are run concurrently (2017)
– All modules between two Filters in a Path are run concurrently (2020)

• Process Events from multiple LuminosityBlocks concurrently (2018)
• Process Events from multiple IOVs concurrently (2019)
• Process multiple EventSetup modules concurrently (2020)
• Process Events from multiple Runs concurrently (2022)

– Not enabled by default yet

• Powered by a task execution engine based on asynchronous execution concepts 
and implemented with Intel oneTBB 

Available concurrency levels in CMSSW

5



3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

• Doing a full-fledged scalability 
study for CHEP23
– Latest CMSSW, ROOT 6.26

• Preliminary results on 48-core 
virtual machine for 
reconstruction application
– 8 threads fully efficient
– 48 threads ~85 % efficient

Sneak peek on scalability

6

1 thread
8

16
2448



3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

• I/O is the main bottleneck on high thread count
– Here “I/O” means mostly ROOT serializing and compressing the data products across 

many Events into a columnar format
• Storing data in per-Event blobs would scale ~perfectly (studied in HEP-CCE)
• Columnar format compresses much better, and want to to minimize the size of archived data

– Want to work on simplifying I/O for temporary files in grid jobs running CMSSW chains
• Need some support from Workflow Management, being worked on

– Also looking in lossy compression
– On HL-LHC timescale we are working with the ROOT team to make their new RNTuple 

storage format usable in CMSSW

• Some parts of the applications do not scale well
– In the recent past the event generators have been the main source of issues
– Increasing the job thread count in production may reveal new areas that will need 

attention

Improving CPU efficiency on high thread count

7



3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

• CMS’ general approach has been to
– Implement general mechanisms, that are agnostic of accelerator specifics, in the framework
– Implement accelerator specific code as a layer between the framework and user code
– Allow gradual adoption, keep rest of codebase unchanged

• Generic mechanism for “outside of
CMSSW” work called “external worker”
– Allows CPU thread to do other work

• Once external work finishes, new task
added to TBB 

– Used for
• Direct GPU usage via CUDA/Alpaka
• SONIC (ML inference as a service)
• GeantV integration exercise

Compute accelerators

8

CPU

Accelerator

acquire() produce()other work

GPU, FPGA, 
etc

Ev
en

t d
at

a

Callback

CHEP19 doi:10.1051/epjconf/202024505009

https://doi.org/10.1051/epjconf/202024505009


3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

• Main use case has been CMS’ High Level Trigger
• Some defining characteristics

– Chains of modules that keep the data in GPU memory, minimizing synchronization
– Ability to run a configuration on “any hardware” (“portable configuration”)

• CUDA support added in 2020, used
at HLT in 2022 data taking

• CUDA code being migrated to Alpaka
now, to be validated and used at HLT
later this year
– AMD GPU support being worked on

• Module interfaces were improved
and simplified for Alpaka

• Expect to retire direct CUDA within a year

Direct accelerator usage with CUDA/Alpaka

9

ACAT22 2x 64 core / 128 thread AMD Milan
2x NVIDIA Tesla T4

+80 %

https://indico.cern.ch/event/1106990/contributions/4991283/


3/9/23 Matti Kortelainen | CMSSW Framework Status and Roadmap

• Main theme is efficient use of accelerators
• Ability for asynchronous execution in EventSetup modules

– First use case: copy calibration data from host to device memory asynchronously

• Record information on worker node hardware in the data files
– Stored module provenance information is not good enough to describe the past behavior 

anymore

• Want to automate the ability of deleting temporary Event data products after they 
are no longer needed
– Expect to be useful especially for low-memory GPUs

• Develop better mechanisms to deal with “memory spaces” of data products
– Want to be able to handle both discrete memory and unified memory cases

• Want to investigate batching of data from multiple Events to reduce overheads

Future work on accelerator support

10


