

LArSoft roadmap

Erica Snider March 9, 2023 CSAID Roadmap Meeting

LArSoft

- The Collaboration
 - Experiments, laboratories, software projects collaborating to produce shared, detector-independent software for LArTPC simulation, reconstruction and analysis
- LArSoft "Project"
 - Fermilab team (SciSoft) who support the software sharing paradigm, own the common infrastructure / architecture, provide user support / software expertise to experiments
- The experiments
 - Develop, contribute, validate and support the algorithm code
- Governance

Erica Snider

- Monthly meeting with offline leadership from all experiments
- Quarterly meetings with spokes-level experiment representatives ("Steering Group")

- Charged with oversight of project work
- Approve an annual work plan. See https://LArSoft.org

LArSoft work plan

- Describes the high-level plan of work for the project team.
 - Developed through process of one-on-one meetings with experiments followed by iterations on the draft until presentation to / approval by the Steering Group
 - Reflects experiment requirements and requests
 - Implements the strategic directions for the shared code of the collaboration

LArSoft / SciSoft play a strong leadership role in defining direction, strategy

<u>The 2023 LArSoft Work Plan</u>

2023 LArSoft Work Plan

Strategic directions of the 2023 work plan

- 1. Support multi-threading to optimize running on grid resources
- 2. Enable / facilitate optimized running on GPU and HPC resources
- 3. Facilitate / simplify integration of machine learning workflows
- 4. Support heterogeneous detector readouts in simulation and reconstruction
- 5. Provide a multi-experiment capable event display framework
- 6. Expand adoption of community / industry supported tools

2023 LArSoft Work Plan

Strategic directions of the 2023 work plan

- 1. Support multi-threading to optimize running on grid resources
- 2. Enable / facilitate optimized running on GPU and HPC resources
- 3. Facilitate / simplify integration of machine learning paradigms
- 4. Support heterogeneous detector readouts in simulation and reconstruction
- 5. Provide a multi-experiment capable event display framework
- 6. Expand adoption of community / industry supported tools

LArSoft held "LArTPC Multi-threading and Acceleration Workshop" Mar 2–3 (will come back to this at end...)

1. Support multi-threading

- All experiments report using multiple grid slots to accommodate memory of jobs
 - Running single-threaded programs leads to significant underutilization of CPU
 - Memory use driven by event-level data
 - Need sub-event level multi-threading or more granular data management strategies
- Project work
 - Working with experiments to ensure thread-safety in common and experiment-specific code
 - Implementing multi-threading in common services
 - Past integration of contributions from SciDAC4 efforts

2. Enable / facilitate optimized running on GPU and HPC

- Many LArTPC computing problems highly parallelizable that can benefit from hardware acceleration
 - Low-level data and signal processing
 - Simulation
 - Machine learning
- Multi-threading, GPU acceleration create paths to optimized running on HPC
 - Several experiments / projects have experience with LArSoft code on HPC
 - Demonstrated in SciDAC4 work by Giuseppe Cerati, Sophie Berkman, et al.

- Project work
 - Focus on making low-level data structures suited to GPU processing,
 - Work with experiments on specific algorithms (to be identified)
 - Current Spack migration well suited to needs of HPC-enabled builds

3. Facilitate / simplify integration of machine learning workflows

- Most ML efforts within experiments are completely external to LArSoft
 - MicroBooNE experience:
 - ML-based analysis branch all but isolated to small group of analyzers.
 - Separate data production workflows required, which slowed data availability
 - Integration into LArSoft would alleviate all these issues
- Some ML algorithms benefit from GPU acceleration at inference stage
 - Highly dependent on the problem and solution
 - Some overlap with acceleration work previously noted
- Experiment groups in ICARUS and ND-LAr working on fully ML workflows
- Project work
 - Ensure configurations, inputs and outputs are available to ML interfaces
 - Assist experiment groups with interfacing to LArSoft
 - Past integration of Sonic-derived GPUaaS into LArSoft targeted ML inferencing
 Fermilab

4. Support heterogeneous detector readouts in sim and reco

- Primarily aimed at accommodating pixelated readouts (ND-LAr)
 - Also intended to allow future detectors to have completely different readout schemes

- Project work
 - Adapt geometry and simulation systems
 - Portions of reconstruction code must differ
 - Will be provided by experiments
 - Geometry: requires re-factoring readout from volume geometry
 - Several wire-plane readout configurations already supported
 - Readout geometry currently tightly intertwined with more generic volume geometry

- Past work adapted simulation via similar abstraction of anode simulation
 - The "artg4tk / LArG4" re-factoring completed several years ago

5. Provide a multi-experiment capable event display framework

- A persistent and vocal ask from many experiments
- Would add value in exactly the same way that common sim/reco do.

- Project work
 - Design, develop event display framework, or adapt an existing ED to requirements
 - Experiments provide customizing code

Requires local ED / visualization expertise, which is currently lacking

- Can view this as a request to build this expertise

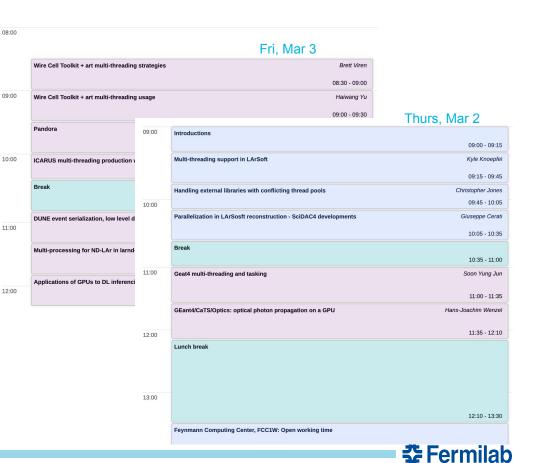
6. Expand adoption of community / industry supported tools

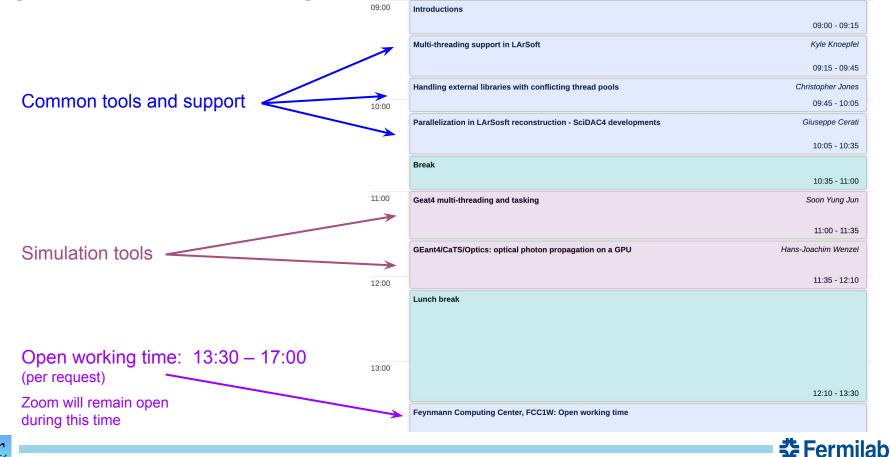
- A good strategy wherever possible and cost effective
- Recent major examples
 - Migration to GitHub (last year)
 - Migration to Spack (continuing)
- Project work
 - Nothing beyond existing work currently in plan, but always seeking opportunities

LArTPC multi-threading and acceleration workshop

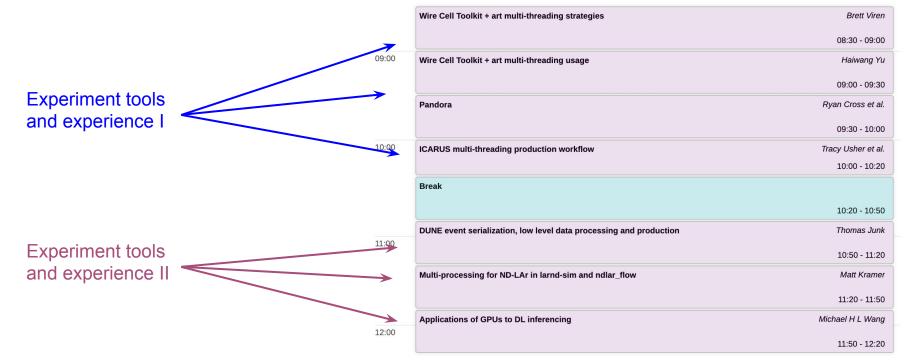
Workshop goals:

 Invited developers and representatives from *art*, GEANT4, LArTPC SciDAC4, LArTPC neutrino experiments


- To learn the multi-threading and acceleration capabilities of frameworks and common toolkits used by LArTPC experiments;
- To share experiences across experiments about existing resource utilization and throughput problems that lend themselves to multi-threaded or acceleration solutions;
- To explore how multi-threading and acceleration is being used to address these problems and open avenues to the use HPC resources more broadly;
- To discuss the results of applying these techniques and capabilities


Organization of the program

- Held last week, Mar 2–3
 - One day of presentations spread across two morning sessions
- Introduction by Adam Lyon
 - Framed broad context and directions within HEP
- Well attended:
 - 43 registered
 - 27 online + 10 in the room on Thursday at peak
 - At least 7-10 in the room + 20-24 online DC
- Engaged audience and robust discussion
 - Could see several adapting plans based on what they were learning
 - Some stated this explicitly
- Consider it a success from this perspective


Organization of the program

Organization of the program[°]

08:00

LArTPC multi-threading and acceleration workshop

- Some observations
 - DUNE + SBN experiments all working on multi-threading, HPC, GPUs
 - DUNE ND-LAr work outside LArSoft was particularly interesting
 - 3rd generation simulation / reconstruction
 - After Pandora/LArSoft, Wire-Cell
 - Heavy use of ML in workflows
 - Written in python
 - Vector data structures / operations replace loops
 - Framework provides native GPU support, data provenance

Not clear how / if this will connect to LArSoft in future Not stated, but seems management and coders may not agree on strategies

- DUNE working on alternatives to multi-threading to manage memory issues
 - Operate at APA level (defines TPC-level readout unit) for horizontal drift FD
 - Allows, but does not require multi-threading

LArSoft Roadmap

LArTPC multi-threading and acceleration workshop

- Some observations
 - Wire Cell Toolkit
 - Full-featured sim/reco/R&D framework with configuration, plugins, component factories, interface classes, code aggregation methods, lib/package building
 - Notably not provenance, which they get from interfacing with LArSoft
 - Event loop / file IO can operate at APA-level for DUNE FD
 - Multiple APAs in flight simultaneously without reading entire event
 - Some limitations to multi-threading capabilities when run in art / LArSoft depending on structure of input files
 - Production simulation may not produce low level data objects
 - That level of data would then be exclusive to WCT
 - Discussions related to future of LArSoft
 - Questions about the function of common frameworks if always passing files between what are effectively independent, stand-alone applications.
 - What should LArSoft be doing to ensure we are adding the most value possible?

SciSoft team

- Vito di Benedetto
- Patrick Gartung
- Chris Green
- Robert Hatcher
- Kyle Knoepfel (co-lead)
- Lynn Garren (ret.)
- Marc Paterno
- Saba Sehrish
- Erica Snider (co-lead)
- Mike Wang
- Hans Wenzel

The end

Why a multi-threading and acceleration workshop?

- 1. Resource optimization and throughput bottlenecks on existing resources
 - All LArTPC neutrino experiments at the lab report significant fraction of jobs running on more than a single grid slot due to memory consumption
 - Many LArTPC computing problems are parallelizable and would benefit from various types of acceleration
- 2. HPC
 - Funding agencies pushing lab / experiments to use more HPC
 - Many experiments / groups have experience with this already
 - Multi-threading / optimizing for GPU also help with this transition, or are already part of it
- 3. Uniformity of LArTPC technology
 - LArTPCs are well-suited for direct sharing of code, techniques, technologies

Erica Snider