Fermilab CONTRACTOR Science

GNNs for Calorimeter Reconstruction in Collider Experiments

Lindsey Gray CSAID Roadmap Meeting 9 February 2023

Exploiting granular information with machine learning

- Modern machine learning can determine important discriminating information in the course of training if the input 'shape' is fixed
 - Using convolutional neural networks for example, images are given as-is for training examples, discriminating features encoded in filters and high-dimensional 'latent spaces'
- However, many next generation particle physics detectors have irregular geometries with zero-suppressed outputs
 - Varying material with sparse sampling of energy deposits
 - Requires different approaches to apply machine learning to this data

Graph Neural Networks: Edge Convolution

- Update $x_i \rightarrow x_i'$ by using edge features
 - i.e. learned features of the edges that connects x_i with its neighbors
 - Still independent of ordering of points, but uses local geometry
 - 'Convolutional' as the operation is applied point by point to obtain x'
- These edge features and aggregation steps mimic the functionality of loops with if-statements in them (i.e. handwritten pattern recognition)

$$\mathbf{x}'_i = \prod_{j:(i,j)\in\mathcal{E}} h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j)$$

Graph Neural Networks: Dynamic Graph Convolutions

 $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = h_{\Theta}(\mathbf{x}_i)$ No neighborhood info (only global)

$$h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = h_{\Theta}(\mathbf{x}_j - \mathbf{x}_i)$$
 Only local information

 $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = \bar{h}_{\Theta}(\mathbf{x}_i, \mathbf{x}_j - \mathbf{x}_i)$ Combination of both

- **Dynamic:** Redo kNN after every update
 - The connectivity matrix changes after every update

🚰 Fermilab

Looking at graphs on physics detector data DEGE Cables Cables on the described as connections between points

n model results

Putting it all together: a model for reconstruction

With an preliminary model the answer seems to be "yes"
 So long as we are willing to accept some light post processing

- Basic steps:
 - Define an input graph
 - train an 'edge classifier' based on information sharing on that graph
 - Apply edge classification scores to yield a subgraph of just the connections of interest

Reconstruction of a charged pion with edge classification

true negatives true positives false positives false negatives

Simultaneous Reco & ID: Tau Lepton Example Prediction

Simultaneous Reco & ID: Tau Lepton Example Truth

Edge Classification: Making a Clustering (I)

- In order to get calorimeter clusters, need to take the edges and convert to groups of points
 - In this case we just make a union of all the points with common edges of the same type

🗲 Fermilab

- It does a reasonable job already segmenting hadronic energy from electromagnetic
- We can reconstruct very close-by photons and hadrons effectively
- The same network and processing can also be used on tracking

Object Condensation: a loss function for reconstruction

- Physics motivated loss function
 - Potentials with charges
 - like charges attract, opposites repel
 - points that should be associated attract each other
 - variable number of inputs and outputs
- The network is trained to predict the 'condensation points' of the input data
 - Points within the data that are representative of a whole object
- The condensation points can then be used to collect points around them into 'segmented' objects
 - at this point we have created particles in an event or clusters in a calorimeter

https://arxiv.org/abs/2002.03605

Graph Neural Networks for HGCAL Reco. (LDRD-2019-017)

- Combine GravNet with simple noise filter, object condensation loss
 - Heavy collaboration with CERN (Jan Kieseler)
- Train and evaluate on di-tau events, producing locally dense environments
- Only very few over-split hadron showers (ACAT 2021, LDRD completed)
 - Otherwise, excellent separation of showers
 - Also works well in dense environments
 - Can provide fine-grained input to Particle Flow, pileup suppression, and substructure

Single Photon Energy Resolution From Multi-Particle Training

- Multiparticle reconstruction not necessarily guaranteed to have good single particle results
- Photons (in 0 PU) have device limited resolution
 - Nearly perfectly efficient hit collection
- Hadron resolution is still a work in progress (personpower issue)

Present Status: 30 Pileup Training

- Truth valid for full events crucial to develop and understand (ML) algorithms
- Recent development: fine ground truth with PU
- PU mixing with FineCalo technical challenge
 - Sufficient simulation information from all (pileup) events needs to be kept long enough to follow decay chain after merging
- Merging algorithms need to be physically meaningful in high PU and IRC safe
 - Developed new hit-by-hit overlap based merging algorithm
 - Consider only the impact region close to boundary for merging metrics

Rotatable plot: <u>https://tklijnsm.web.cern.ch/tklijnsm/</u> hgcal/merging 2022/plots merging Aug22/ tau_pu30_seed0_n100_1_neg.html

Dynamic Reduction Network for ECAL/HGCAL Regression

- Building off: https://arxiv.org/abs/2003.08013
- Dynamic GNN that successively clusters representation to a few pieces of high level data
- Spawned two projects collaborating with U. Minnesota
 - ECAL Energy Regression (S. Rothman: MIT)
 - HGCAL Beamtest Regression (A. Alpana: IISER Pune)
 - Semi-parametric regression (quasi-bayesian methodology for multi-population data)

CMS ECAL Energy Regression

- Use DRN + Semi-parametric regression to improve ECAL energy measurement
 - Provide raw hit-lists to network + minor high-level features
- First > 5% improvement in resolution since \sim 2012
- Foreseen for use in Run3 Hgg and other analysis
- Tight partnership with deployment via SONIC
 - Right now only way to deploy PyTorch in CMSSW
 - Pilot tests show controllable functioning at scale for minimal impact on processing time

HGCAL Beam Test Regression

- Similar DRN implementation on HGCAL
 beam test data
- 2x improvement compared to weights-based regression method
- Currently studying impact of real clustering on final energy resolution

Plans

- Continue with HGCAL ML based reconstruction
 - Personpower issues need to be addressed for continuation (Thomas is leaving)
 - Course of work clear, but is intensive, lengthy, technical work
 - Target deployment in CMSSW within a year even in low pileup scenarios
 - Several research direction identified for improving theoretical basis of network
 - Need to study ablation/robustness tests (degrading data in one way or another)
- Finish up ECAL energy regression
 - Paper is in progress, various presentations made (APS, ICHEP)
 - Finalize deployment within CMSSW
 - Next steps prepare for evolution in Run 3, further hyper parameter optimization
- HGCAL Beam Test energy regression
 - Various presentations already made in several conferences
 - Continuing work on optimizing network and extracting ultimate performance
 - Study effects of pile-up like scenarios (reduced energy collection region, etc.)

Extras

