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Exploiting granular information with machine learning

• Modern machine learning can determine important discriminating information 
in the course of training if the input ‘shape’ is fixed
- Using convolutional neural networks for example, images are given as-is for training 

examples, discriminating features encoded in filters and high-dimensional ‘latent spaces’
• However, many next generation particle physics detectors have irregular 

geometries with zero-suppressed outputs
- Varying material with sparse sampling of energy deposits
- Requires different approaches to apply machine learning to this data
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Graph Neural Networks: Edge Convolution
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• Update xi → xi' by using edge features  
• i.e. learned features of the edges that connects xi with its neighbors  
• Still independent of ordering of points, but uses local geometry  
• 'Convolutional' as the operation is applied point by point to obtain x'

• These edge features and aggregation 
steps mimic the functionality of loops 
with if-statements in them (i.e. hand-
written pattern recognition)

Can set dim 
of edge 

feature vector

[1801.07829]

edge

node
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Graph Neural Networks: Dynamic Graph Convolutions
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No neighborhood info (only global)

Only local information

Combination of both
• Dynamic: Redo kNN after every update 

• The connectivity matrix changes after every update

[1801.07829]
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• Tracks and clusters can also be described as connections between points
- We can then score these relationships between the detector data and select certain 

associations in the graph that we want to keep.

• This results in a useful abstraction: finding points comprising helices in tracks 
is the same as points in calorimeter clusters
- Can we simplify our lives and find one algorithm which can handle these different 

cases?

Looking at graphs on physics detector data
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Xiangyang Ju CTD/IT 2019, Valencia Spain  3 Apr, 2019

Introduction
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In the CTD2018, Steve Farrell showed exciting performance of 
GNN on predicting edge scores. [link]Constructing the graph

• Select hits in neighborhood of 
true track 

• Label the seeds 

• Target is the true binary labels 
for every hit
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Hit classification Segment classification

• Connect hits on adjacent layers 
using crude geometric 
constraints 

• delta(phi) < pi/4 

• delta(z) < 300mm

QCD data with pileup µ=10, pt>1GeV, 
barrel only, and duplicate hits removed

QCD data with μ = 10 
[link]

Hit classification model results

• Model settings 

• 7 graph iterations 

• 26k parameters 

• It works really well! 

• Good purity and 
efficiency
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Test set metrics 
Accuracy:   0.9942 
Purity:     0.9918 
Efficiency: 0.9793

Great separation

Hit classification model results

• Model settings 

• 7 graph iterations 

• 26k parameters 

• It works really well! 

• Good purity and 
efficiency
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Test set metrics 
Accuracy:   0.9942 
Purity:     0.9918 
Efficiency: 0.9793

Great separation

??????
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“same thing”

particles going this way particles going this waycollision point here
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Graph NN on FPGA

�17

Model: binary classification on the edges of the graph todistinguish true hit pairs 
based on HEP.TrkX GNN v1 architecture [arXiv:1810.06111]

Edge network uses the node features to compute edge weights

Node network aggregates forward and backward node 
features with the edge weights and updates node features

With each iteration, the model propagates information through the graph, strengthens 
important connections, and weakens useless ones.

Slide from Steve Farrell

Putting it all together: a model for reconstruction
• With an preliminary model the answer seems to be “yes”
- So long as we are willing to accept some light post processing

• Basic steps:
- Define an input graph
- train an ‘edge classifier’ based on information sharing on that graph
- Apply edge classification scores to yield a subgraph of just the connections of interest
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Figure 2. Left: An example of computing an edge feature, eij , from a point pair, xi and xj . In this example, h⇥() is instantiated using
a fully connected layer, and the learnable parameters are its associated weights and bias. Right: Visualize the EdgeConv operation. The
output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.

2. Related Work
Hand-Crafted Features Various tasks in geometric data
processing and analysis — including segmentation, clas-
sification, and matching — require some notion of local
similarity between shapes. Traditionally, this similarity is
established by constructing feature descriptors that capture
local geometric structure. Countless papers in computer vi-
sion and graphics propose local feature descriptors for point
clouds suitable for different problems and data structures. A
comprehensive overview of hand-designed point features is
out of the scope of this paper, but we refer the reader to
[51, 15, 4] for comprehensive discussion.

Broadly speaking, one can distinguish between extrin-
sic and intrinsic descriptors. Extrinsic descriptors usually
are derived from the coordinates of the shape in 3D space
and includes classical methods like shape context [3], spin
images [17], integral features [27], distance-based descrip-
tors [24], point feature histograms [39, 38], and normal his-
tograms [50], to name a few. Intrinsic descriptors treat the
3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the met-
ric are by definition intrinsic and invariant to isometric de-
formation. Representatives of this class include spectral de-
scriptors such as global point signatures [37], the heat and
wave kernel signatures [48, 2], and variants [8]. Most re-
cently, several approaches wrap machine learning schemes
around standard descriptors [15, 42].

Learned Features. In computer vision, approaches rely-
ing on ‘hand-crafted’ features have reached a plateau in per-
formance on challenging image analysis problems like im-
age recognition. A breakthrough came with the use of con-
volutional neural networks (CNNs) [22, 21], leading to an
overwhelming trend to abandon hand-crafted features in fa-
vor of models that learn task-specific features from data.

A basic CNN architecture is the deep neural network,
which interleaves convolutional and pooling layers to ag-
gregate local information in images. This success of deep
learning for images suggests the value of adapting related

insight to geometric data like point clouds. Unlike images,
however, geometric data usually are not on an underlying
grid, requiring new definitions for building blocks like con-
volution and pooling.

Existing 3D deep learning methods can be split into
two classes. View-based and volumetric representations
exemplify techniques that try to “place” geometric data
onto a grid and apply existing deep learning algorithms
to the adapted structure. Other methods replace the stan-
dard building blocks of deep neural architectures with spe-
cial operations suitable for unstructured geometric data
[29, 6, 31, 34, 36]. We provide details about the closest
techniques to ours below.

View-based Methods View-based techniques represent a
3D object as a collection of 2D views, to which standard
CNNs used in image analysis can be applied. Typically,
a CNN is applied to each view and then the resulting fea-
tures are aggregated by a view pooling procedure [47].
View-based approaches are also good match for applica-
tions where the input comes from a 3D sensor and repre-
sented as a range image [53], in which case a single view
can be used.

Volumetric Methods Voxelization is a straightforward
way to convert unstructured geometric data to a regular
3D grid over which standard CNN operations can be ap-
plied [30, 54]. These volumetric representations are often
wasteful, since voxelization produces a sparsely-occupied
3D grid. Time and space complexity considerations limit
the resolution of the volumetric grids, yielding quantization
artifacts. Recent space partition methods like k-d trees [20]
or octrees [49] remedy some resolution issues but still rely
on subdivision of a bounding volume rather than local ge-
ometric structure. Finally, [35] studied a combination of
view-based and volumetric approaches for 3D shape classi-
fication.
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https://arxiv.org/abs/2003.11603

just raw hit 
information + a 
“guess” at the 
graph

selected links 
between hits

https://arxiv.org/abs/2003.11603
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Reconstruction of a charged pion with edge classification
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true negatives
true positives
false positives
false negatives

T. Klijsnma, S. Ghosh, 
LG, K. Pedro https://arxiv.org/abs/2003.11603

https://arxiv.org/abs/2003.11603
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Simultaneous Reco & ID: Tau Lepton Example Prediction
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T. Klijsnma, S. Ghosh, 
LG, K. Pedro

Hadronic Edges
EM Edges
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Simultaneous Reco & ID: Tau Lepton Example Truth
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T. Klijsnma, S. Ghosh, 
LG, K. Pedro
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Edge Classification: Making a Clustering (I)

• In order to get calorimeter clusters, need to take the edges and convert to 
groups of points
- In this case we just make a union of all the points with common edges of the same type
- It does a reasonable job already segmenting hadronic energy from electromagnetic
- We can reconstruct very close-by photons and hadrons effectively

• The same network and processing can also be used on tracking
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T. Klijnsma, S. Ghosh, 
LG, K. Pedro
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Object Condensation: a loss function for reconstruction 

• Physics motivated loss function
- Potentials with charges
- like charges attract, opposites repel
- points that should be associated attract 

each other
- variable number of inputs and outputs

• The network is trained to predict the 
‘condensation points’ of the input data
- Points within the data that are 

representative of a whole object

• The condensation points can then be 
used to collect points around them into 
‘segmented’ objects
- at this point we have created particles in an 

event or clusters in a calorimeter

11

https://arxiv.org/abs/2002.03605

https://arxiv.org/abs/2002.03605
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Graph Neural Networks for HGCAL Reco. (LDRD-2019-017)

• Combine GravNet with simple noise filter, object condensation loss
- Heavy collaboration with CERN (Jan Kieseler)
• Train and evaluate on di-tau events, producing locally dense environments
• Only very few over-split hadron showers (ACAT 2021, LDRD completed)
- Otherwise, excellent separation of showers
- Also works well in dense environments
- Can provide fine-grained input to Particle Flow, pileup suppression, and substructure

12
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Single Photon Energy Resolution From Multi-Particle Training

• Multiparticle reconstruction not necessarily guaranteed to have good single 
particle results
• Photons (in 0 PU) have device limited resolution
- Nearly perfectly efficient hit collection
• Hadron resolution is still a work in progress (personpower issue)

13

PU = 0
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Present Status: 30 Pileup Training

• Truth valid for full events crucial to 
develop and understand (ML) 
algorithms
• Recent development: fine ground truth 

with PU
• PU mixing with FineCalo technical 

challenge
- Sufficient simulation information from all 

(pileup) events needs to be kept long 
enough to follow decay chain after merging

• Merging algorithms need to be 
physically meaningful in high PU and 
IRC safe
- Developed new hit-by-hit overlap based 

merging algorithm
- Consider only the impact region close to 

boundary for merging metrics
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Rotatable plot: https://tklijnsm.web.cern.ch/tklijnsm/
hgcal/merging_2022/plots_merging_Aug22/
tau_pu30_seed0_n100_1_neg.html

Truth in
30 PU

https://tklijnsm.web.cern.ch/tklijnsm/hgcal/merging_2022/plots_merging_Aug22/tau_pu30_seed0_n100_1_neg.html
https://tklijnsm.web.cern.ch/tklijnsm/hgcal/merging_2022/plots_merging_Aug22/tau_pu30_seed0_n100_1_neg.html
https://tklijnsm.web.cern.ch/tklijnsm/hgcal/merging_2022/plots_merging_Aug22/tau_pu30_seed0_n100_1_neg.html
https://tklijnsm.web.cern.ch/tklijnsm/hgcal/merging_2022/plots_merging_Aug22/tau_pu30_seed0_n100_1_neg.html
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Dynamic Reduction Network for ECAL/HGCAL Regression
• Building off: https://arxiv.org/abs/2003.08013
• Dynamic GNN that successively clusters representation to a few pieces of 

high level data
• Spawned two projects collaborating with U. Minnesota
- ECAL Energy Regression (S. Rothman: MIT)
- HGCAL Beamtest Regression (A. Alpana: IISER - Pune)
- Semi-parametric regression (quasi-bayesian methodology for multi-population data)
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https://arxiv.org/abs/2003.08013
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CMS ECAL Energy Regression

• Use DRN + Semi-parametric regression to improve 
ECAL energy measurement
- Provide raw hit-lists to network + minor high-level features
• First > 5% improvement in resolution since ~2012
• Foreseen for use in Run3 Hgg and other analysis
• Tight partnership with deployment via SONIC
- Right now only way to deploy PyTorch in CMSSW
- Pilot tests show controllable functioning at scale for 

minimal impact on processing time
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HGCAL Beam Test Regression

• Similar DRN implementation on HGCAL 
beam test data
• 2x improvement compared to weights-based 

regression method
• Currently studying impact of real clustering 

on final energy resolution

17
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Plans

• Continue with HGCAL ML based reconstruction
- Personpower issues need to be addressed for continuation (Thomas is leaving)
- Course of work clear, but is intensive, lengthy, technical work
- Target deployment in CMSSW within a year even in low pileup scenarios
- Several research direction identified for improving theoretical basis of network
- Need to study ablation/robustness tests (degrading data in one way or another)

• Finish up ECAL energy regression
- Paper is in progress, various presentations made (APS, ICHEP)
- Finalize deployment within CMSSW
- Next steps - prepare for evolution in Run 3, further hyper parameter optimization

• HGCAL Beam Test energy regression
- Various presentations already made in several conferences
- Continuing work on optimizing network and extracting ultimate performance
- Study effects of pile-up like scenarios (reduced energy collection region, etc.)
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Extras
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