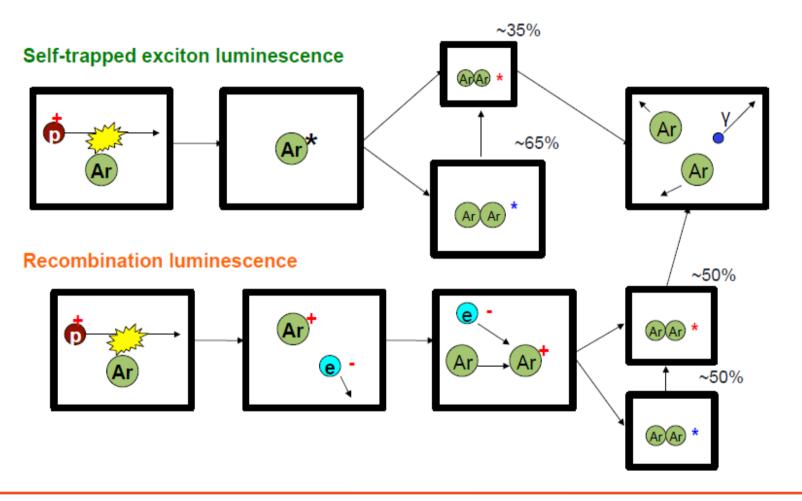
Physics Requirements for Far Detector 1 – Horizontal Drift Photon Detection System

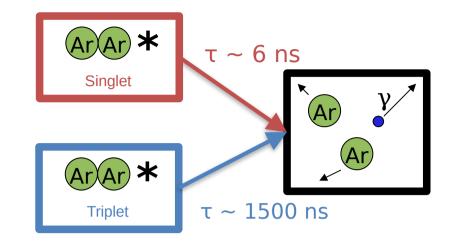
Laura Paulucci, UFABC Final Design Review for the DUNE FD1 Photon Detection System March 14th, 2023

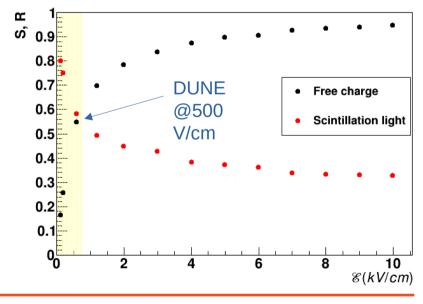

Outline

- Scintillation light in liquid argon
 - Generation
 - Simulation and Reconstruction
- The role of the photon detectors in DUNE physics
- How those physics roles define the PDS requirements
 - How requirements are met by the proposed PDS
- Conclusions

Argon scintillation

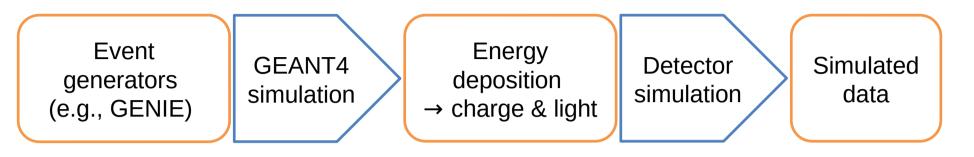
• The amount of charge and light produced by a particle is anti-correlated

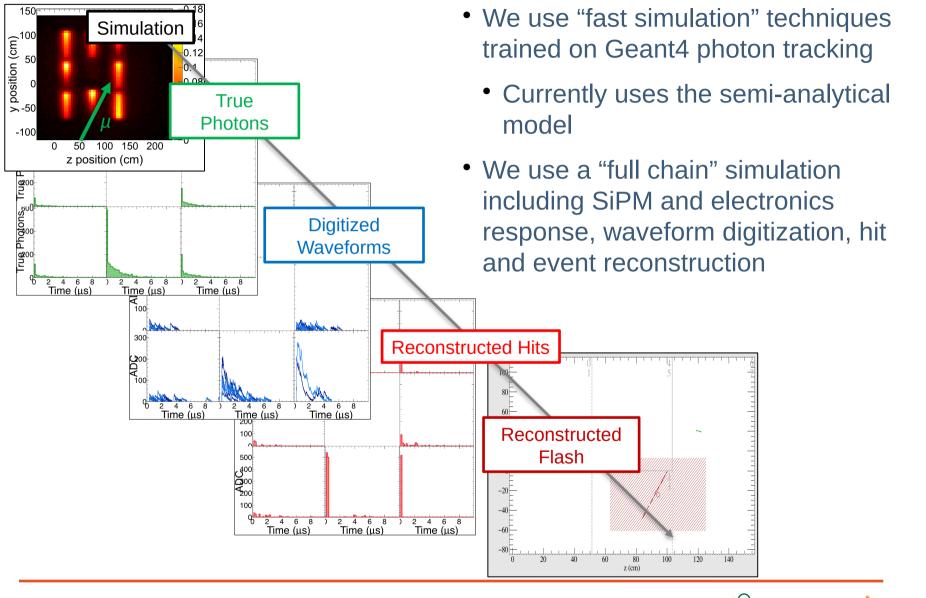




Argon scintillation

- Light is produced when an Ar-Ar* excimer decays
 - ~25% is in the Singlet state which decays in ~6 ns
 - Remainder is in the Triplet state which decays in ~1500 ns
- Argon is a strong scintillator:
 ~24 y/keV at nominal DUNE field
 - ~60% of the energy goes into photons

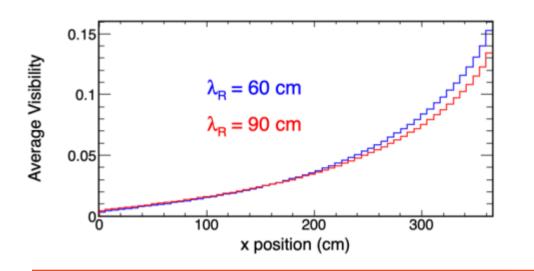

4

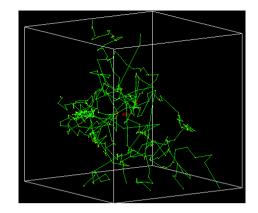

Scintillation light simulation in the DUNE FD

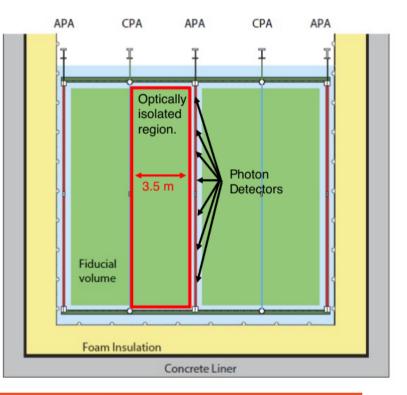
- Simulation implemented within common LArSoft framework
- GEANT4 tracks primary particles and their daughters through the detector geometry → energy depositions → number of ionization electrons and scintillation photons
- In addition to signals (supernova v, solar v, NDK, ...) we have a radiological model with growing sophistication
 - Includes bulk contaminants, those expected to come from other materials, and external source

Component		
³⁹ Ar in LAr		
⁴² Ar and ⁴² K in LAr		
⁸⁵ Kr in LAr		
²²² Rn chain in LAr		
⁴⁰ K in cathode		
²³⁸ U chain in cathode		
⁶⁰ Co in anode		
²³⁸ U chain in anode		
²²² Rn chain in PDS		
External neutrons		
(rocks, concrete walls, etc)		
Cavern gammas		

Scintillation light simulation in the DUNE FD




L. Paulucci | Physics Requirements for FD1-HD PDS



Impact of optical properties

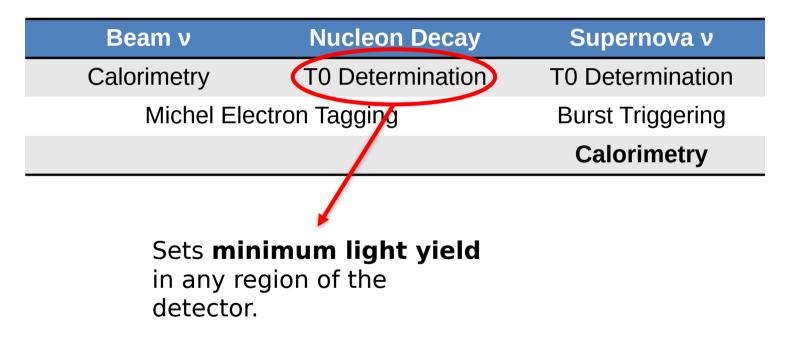
- Rayleigh scattering length in LAr is short relative to 3.5 m drift distance
- TDR Studies assumed $\lambda_R = 60 \text{ cm}$ at 128 nm
- Recent measurements suggest $\lambda_R = 90-100$ cm
- Studies were likely too pessimistic, not yet carefully quantified

7

L. Paulucci | Physics Requirements for FD1-HD PDS

Physics with the Photon Detector System

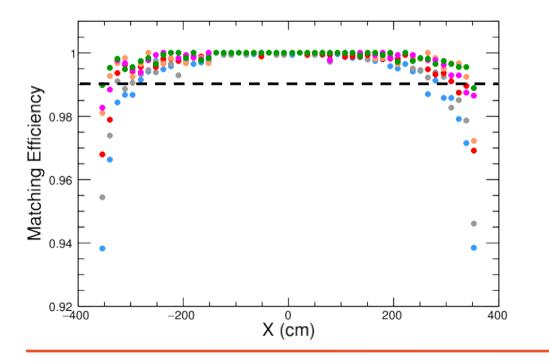
- Determination of T0 in all non-beam physics.
 - T0 \rightarrow absolute distance from the readout plane
 - Useful for:
 - Fiducial volume selection (e.g. exclude nucleon decay backgrounds)
 - Correcting for attenuation in TPC signals
- Triggering
 - An alternative "trigger primitive" for identifying supernova bursts.
 - Combine with the TPC for a sophisticated solar neutrino trigger.
- Calorimetry
 - A complimentary energy measurement, even at a few MeV.
- And possibly more:
 - Michel tagging, pulse shape discrimination for PID...



• In order to set requirements, we look at the different potential applications in different physics samples and determine which sets the tightest constraints on different PDS properties.

Beam v	Nucleon Decay	Supernova v
Calorimetry	T0 Determination	T0 Determination
Michel Electron Tagging		Burst Triggering
		Calorimetry

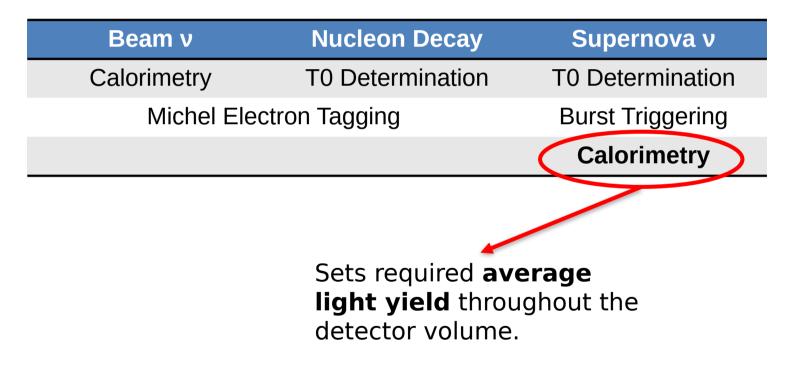
• In order to set requirements, we look at the different potential applications in different physics samples and determine which sets the tightest constraints on different PDS properties.



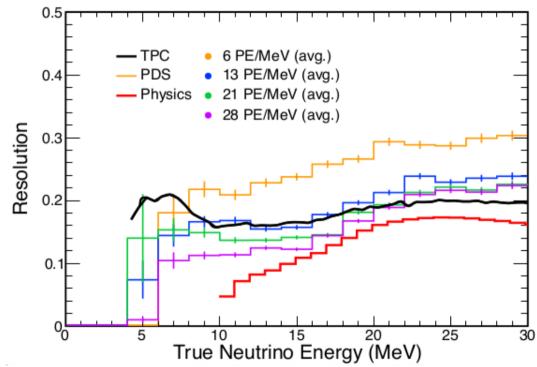
10

T0 for Nucleon Decay Events

- **Requirement**: Must be able to determine T0 (e.g. tag with light) with >99% efficiency for all points throughout the detector volume.
 - The big worry with nucleon decay is background, and the photon detectors allow fiducialization to exclude entering backgrounds.
- Sets a minimum light yield of 0.5 PE/MeV.

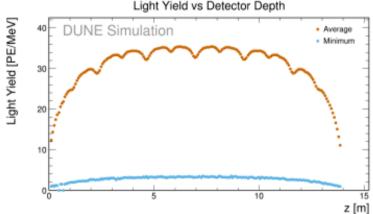

CPA Light Yield (PE/MeV)	Mis-ID Rate at CPA (%)
0.09	6.2 ± 0.4
0.28	2.3 ± 0.4
0.33	1.6 ± 0.2
0.50	1.1 ± 0.2

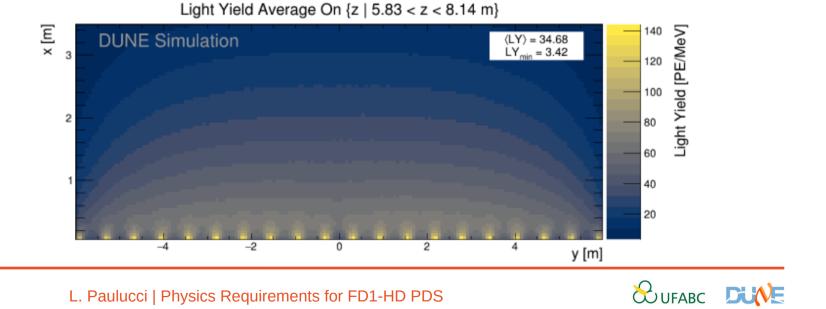
11


L. Paulucci | Physics Requirements for FD1-HD PDS

• In order to set requirements, we look at the different potential applications in different physics samples and determine which sets the tightest constraints on different PDS properties.

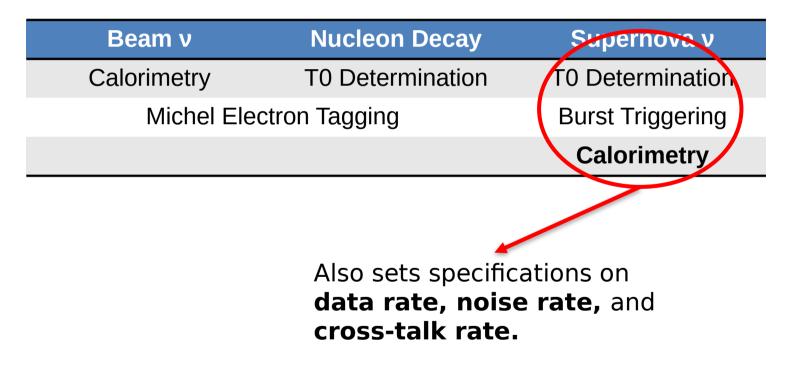
Supernova Calorimetry


- **Requirement**: Comparable energy resolution to that of the TPC for supernova neutrinos below 20 MeV.
 - Allows us to take full advantage of the anti-correlation between light and charge when reconstructing the SN spectrum.
 - Also mitigates risk by allowing some measurement when TPC is not operating or purity is poor when a Supernova burst occurs.
 0.5
- Developed a proto-analysis to:
 - Reject radiological bkgd.
 - Correct for attenuation vs. and the relationship between photos and true energy.
- Sets a minimum average light yield of 20 PE/MeV.
- Important caveat: only applies to the 60-70% of events which are bright enough to reconstruct.



HD PDS and LY Requirements

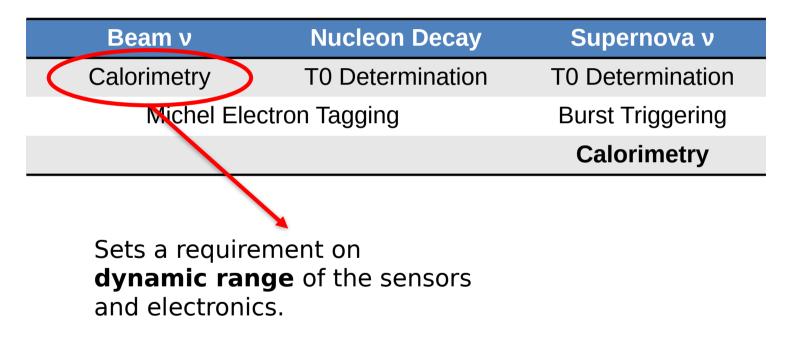
- The HD PDS is a capable system that is built to comply with all physics requirements
- Parameters of the simulation
 - Rayleigh scattering ~1m
 - Absorption length = $20m (3 \text{ ppm of } N_2)$
 - X-Arapuca efficiency = 3%



HD PDS and LY Requirements

• The HD PDS is a capable system that is built to comply with all requirements

X-Arapuca efficiency	Average LY (central)	Average LY (all volume)	Minimum LY
3.0%	34.7	30.7	0.9
2.5%	28.9	25.6	0.8
2.0%	23.1	20.4	0.6
1.0%	11.6	10.2	0.3
0.5%	5.8	5.1	0.1


• In order to set requirements, we look at the different potential applications in different physics samples and determine which sets the tightest constraints on different PDS properties.

16

• In order to set requirements, we look at the different potential applications in different physics samples and determine which sets the tightest constraints on different PDS properties.

17

Beam Neutrino Calorimetry

- **Requirement:** Have sufficient dynamic range so that most channels in most beam neutrino events are not saturated, while also preserving single photon sensitivity for low-E physics.
 - Some channels saturating is tolerable, since there are two possible mitigation schemes: waveform shape and looking at neighboring channels.
 - Without those algorithms in hand, however, setting this requirement will need to be based on "reasonable limits."
- Since the TDR, some further studies were performed, and the minimum requirement was set at **1-2000 photons**.
 - Only a few percent of beam neutrino events are likely to have saturating channels.
 - A 14-bit ADC operating at a gain with 8 ADC/PE, meets these requirements.

TDR Requirements

- **SP-FD-3**: Average (minimum) light yield > 20 (0.5) PE/MeV
 - Rationale: Supernova calorimetry and NDK fiducialization
 - Detector specification: collection efficiency > 2.0%, and the X-ARAPUCA efficiency has been measured to be >~2%.
- **SP-FD-4**: Time resolution $< 1 \mu s$ (goal < 100 ns)
 - (Didn't discuss much, so we meet this requirement trivially.)
 - Rationale: 1 μs will allow mm-scale resolution in the drift direction, needed for nucleon decay fiducialization. Better time resolution will help with Michel electron tagging.
 - Detector specification: sufficient fast sampling (62.5 MHz is plenty). Also constrains the impedances and shaping in cold electronics.

TDR Requirements

- **SP-PDS-14**: Signal-to-noise > 4
 - Rationale from physics: need to see single PEs
 - Rationale from electronics: need to keep data rate within limits
 - S/N>5 was obtained from dedicated tests
- **SP-PDS-16**: Dynamic range < 20%
 - Requirement set at a range of 1-2000 photons
 - Rationale: ensure that we can correct for any saturation which occurs to allow for accurate calorimetry of beam neutrinos while still recording single PEs.

Conclusions

- We have developed a suite of requirements to ensure the single-phase photon detection system does its part in meeting the high-level physics goals of DUNE
- The current design of light collectors, sensors, and electronics meets the requirements in:
 - Minimum light yield
 - Average light yield
 - Time resolution
 - Dynamic range
 - Signal to Noise
 - Data rate
- There is still some room for improvement, particularly with supernova and solar neutrino triggering

