

Progress of Muonium-to-Antimuonium Conversion Experiment (MACE)

Workshop on a Future Muon Program at Fermilab

2023-03-28

Shihan Zhao

zhaoshh7@mail2.sysu.edu.cn

Muonium-to-Antimuonium Conversion Experiment

MACE working group: Ai-Yu Bai,¹ Yu Chen,¹ Yukai Chen,² Rui-Rui Fan,² Zhilong Hou,² Han-Tao Jing,² Hai-Bo Li,² Yang Li,² Han Miao,² Huaxing Peng,² Ying-Peng Song,² Jian Tang,¹ Jing-Yu Tang,² Nikolaos Vassilopoulos,² Chen Wu,³ Tian-Yu Xing,² Yu Xu,¹ Ye Yuan,² Yao Zhang,² Guang Zhao,² Shihan Zhao,¹ and Luping Zhou² ¹School of physics, Sun Yat-sen University, China ²Institude of High Energy Physics, Chinese Academy of Science, China ³Research Center of Nuclear Physics, Osaka University, Japan

Reference: Snowmass2021 Whitepaper: Muonium to antimuonium conversion, arXiv:2203.11406

- Motivation
- Conceptual Design of MACE
 - > Muonium Production: Simulation and Optimization
 - **➢ Drift Chamber Design and Simulation**
 - **≻Offline Software R&D**
- Preliminary analysis
- Summary

- Motivation
- Conceptual Design of MACE
 - > Muonium Production: Simulation and Optimization
 - **→ Drift Chamber Design and Simulation**
 - **≻Offline Software R&D**
- Preliminary analysis
- Summary

Frontiers of Particle Physics

3 Major frontiers of Particle Physics:

- The Energy Frontier
- The Intensity Frontier
- The Cosmic Frontier

Searching for BSM:

- Charged lepton flavor violation (cLFV)?
- The origin of neutrino masses?
- The mystery of the matter-antimatter asymmetry?
- Dark matter?
-

At the Intensity Frontier: Search for cLFV

Searching for charged lepton flavor violation (cLFV):

µ-e conversion

- Mu2e
- COMET
- Mu3e
- MEGII

- $\mu \rightarrow eee$
- \rightarrow $\mu \rightarrow e\gamma$

- Why cLFV:
 - cLFV, as a neutrino-less lepton flavor violating process, is forbidden in SM.
 - Precise (high-intensity) experiment searching for cLFV, is an sensitive probe of BSM.
 - New scalar or vector particles can be constrained.

Why Muonium Conversion?

- Muonium conversion: a ΔL=2 cLFV process.
- Neutrino mass model: doubly charged TeV Higgs boson can be constrained.
- Complementary to:
 - Δ L=1 cLFV experiments (μ -e conversion, $\mu \rightarrow eee$, $\mu \rightarrow e\gamma$).
 - Collider experiments.

Chengcheng Han, Da Huang, Jian Tang, Yu Zhang. Probing the doubly charged Higgs boson with a muonium to antimuonium conversion experiment. Phys.Rev.D 103 (2021) 5, 055023

Tong Li, Michael A. Schmidt. Sensitivity of future lepton colliders and low-energy experiments to charged lepton flavor violation from bileptons. Phys.Rev.D 100 (2019) 11, 115007

Why Muonium Conversion?

• Current limit (L. Willmann, 1999):

$$P_{M\overline{M}} < 8.3 \times 10^{-11} (90\% C.L.).$$

- 20 years later:
 - Detector technology and design is improving.
 - Muon beam luminosity is much higher.
 - Better muonium targetry.
- We can do substantially better.

L. Willmann et al. New bounds from searching for muonium to antimuonium conversion, Phys.Rev.Lett. 82 (1999), 49-52.

MACE: Shed light on new physics

- muonium-to-antimuonium conversion experiment since 1999, we plan to improve the sensitivity by more than two orders of magnitude.
 - Together with other flavor and collider searches, MACE will shed light on the mystery of the neutrino masses.

MACE: Muonium-to-Antimuonium Conversion Experiment

Motivation

Conceptual Design of MACE

> Muonium Production: Simulation and Optimization

→ Drift Chamber Design and Simulation

>Offline Software R&D

Preliminary analysis

Summary

Conceptual Design of MACE

How to detect the muonium-antimuonium conversion?

$$\mu^+e^- \rightarrow \mu^-e^+$$

We can achieve this by identifing the final states:

Search for the conversion by vertex coincidence and charge identification.

Conceptual Design of MACE

Vertex coincidence: Michel e- track
 and e+ transverse position projection.

Calorimeter: identifies atomic e⁺.

Basic concept:
Coincidence of spectrometer,
MCP, and calorimeter.

Conceptual Design of MACE

Spectrometer

Detects Michel e^{+/-} (37MeV avg., 52.8MeV max) Goal: Charge misidentify rate <10⁻⁵, vertex resolution (<3mm), momentum resolution (<500keV/c) Tracking chamber: drift chamber (cosθ ~ 0.9)

Atomic e+/- detector

position of e^{+/-}.
Calorimeter: Detects γ of 511keV (e⁺ annihilation).

MCP: measures transverse

Conceptual Design of MACE: Summary

- Basic concept:
 - Coincidence of a Michel e^- and a e^+ from atomic shell:
 - 1. Spectrometer
 - **MCP**
 - 3. Calorimeter

$$\overline{M} \rightarrow \nu \nu e^- e^+$$

$$\overline{M} \rightarrow \nu \nu e^- e^+$$

$$\overline{M} \rightarrow \nu \nu e^- e^+$$
, $e^+ \xrightarrow{\text{annihilate on MCP}} \gamma \gamma$

- Motivation
- Conceptual Design of MACE

> Muonium Production: Simulation and Optimization

▶ Drift Chamber Design and Simulation

≻Offline Software R&D

- Preliminary analysis
- Summary

EM Calorimeter

MACE Upper Bound & Muonium Yield

- As an intensity frontier cLFV experiment, MACE demands as much primary particles as possible:
- A simple estimation: inheriting previous PSI experiment parameters (L. Willmann et al., 1999), we have conversion probability upper bound estimation

$$P_{\text{MM}} < \frac{2.30 \, F_{C}}{\varepsilon_{\text{all}} \, S_{B} \, Y_{\text{M}} \, L_{\mu} \, t}$$

- Acquisition time is precious, the upper bound is limited by the number of muoniums $(N_{\rm M})$, we need more muoniums!
- Two approaches:
- 1. Enhance beam luminosity L_{μ} :
 - $\rightarrow 10^{8} \sim 10^{10} \, \mu^{+/s}$ beam
- 2. Enhance muonium yield $Y_{\rm M}$:
 - → Optimization of silica aerogel target, or new possibilities (e.g. SF-He).

Muonium Production and Transport

Silica aerogel target

Surface At Muonium with thermal energy

MC simulation for muonium transport has been developed under the μ MACE offline software framework.

- ① Geant4 low-energy EM process.
- ② Geant4 AtRest process, modeled phenomenologically.
- ③ Random walk approach to thermal muonium tracking.

Simulation:

M

Muonium Yield Simulation

- Surface muon beam momentum spread: 10%
- Muonium mean free path: 200 nm, temp.: 300 K
- Optimal diameter: $1.55\sqrt{D\tau}$ (50.8 µm)

Muonium Yield Simulation - Low σ_p Beam

- Surface muon beam momentum spread: 2.5%
- Muonium mean free path: 200 nm, temp.: 300 K
- Optimal diameter: $1.51\sqrt{D\tau}$ (49.5 µm)
- Optimal spacing: $5.31\sqrt{D\tau}$ (175 µm)

Comments on Muonium Yield

- Acquisition time is precious, the upper bound is limited by the number of muoniums $(N_{\rm M})$.
- The more muoniums the merrier.
- If the beam luminosity reaches 10⁸ μ⁺/s and the muonium yield increases by 2 orders of magnitude, MACE can improve the upper bound by 3-4 orders of magnitude.
- The improvement of detector performance will make contributions, correspondingly.

- Motivation
- Conceptual Design of MACE

> Muonium Production: Simulation and Optimization

- ➤ Drift Chamber Design and Simulation
- >Offline Software R&D
- Preliminary analysis
- Summary

Design of Drift Chamber

- The performance of a drift chamber is largely determined by its geometry design, including:
 - Drift cell design
 - Arrangement of wires (stereo/axial)
 - Solid angle coverage, etc.
- To guarantee the required resolution, we design the drift chamber for MACE with following specifications:
 - Square drift cell with minimum cell deformation.
 - Layers of cells are divided into different super layers, cells in the same super layer are twisted identically (all axial, or all stereo with specific stereo angle).
 - Interlaced axial/stereo layer (e.g. VAUAVAU..., A: axial layer, V: stereo layer with positive stereo angle, U: stereo layer with negative stereo angle).

Design of Drift Chamber

 We have developed an algorithm to generate the drift chamber geometry, allowing us to evaluate and optimize the geometry design of drift chamber.

- Figure: generated Drift chamber geometry.
- This example chamber is consist of 7 super layer, each super layer includes 3 sense layers. They are arranged as VAUAVAU. Wires are scaled to be visible (blue: field wire, red: sense wire).

Design of Drift Chamber

- Left: drift cells in an axial super layer, cells are axial.
- Right: cells in a stereo super layer, cells are twisted.
- Wires are scaled to be clearly visible (blue: field wire, red: sense wire).

Fast Simulation of Drift Chamber

- When a charged particle passes through a drift cell, the drift distance can then be reconstructed.
- Drift distance: distance between the track and the sense wire.
- We use the simple and classical DOCA (distance of closest approach) method to perform the fast simulation:

$$d = (\langle \vec{r} \rangle - \vec{r}_{wire}) \cdot \frac{\vec{t}_{wire} \times \langle \vec{p} \rangle}{\|\vec{t}_{wire} \times \langle \vec{p} \rangle\|}$$
$$\langle \vec{p} \rangle = \frac{\vec{p}_{in} + \vec{p}_{out}}{2}$$
$$\langle \vec{r} \rangle = \frac{\vec{r}_{in} + \vec{r}_{out}}{2}$$

- $\vec{r}_{\rm wire}$: A point on the sense wire (e.g. the point at z=0)
- \vec{t}_{wire} : Direction of the sense wire

Fast Simulation of Drift Chamber

- Using the pure geometrical DOCA method, drift distances are directly readout.
- We can check the implementation by drawing its distribution.
- For example, the drift distance and hit rate distribution of a Drift chamber with 10 mm reference cell width:

Fast Simulation of Drift Chamber

- Using the pure geometrical DOCA method, drift distances are directly readout.
- We can check the implementation by drawing its distribution.
- For example, the drift distance and hit rate distribution of a Drift chamber with 10 mm reference cell width:

Track Reconstruction

- Evalulated 15 geometry designs of drift chamber,
 - $1.6 \times 10^6 \,\mu^+$ for each simulation:
 - Directly records drift distances.
 - > Stereo wire not implemented yet, records z_{hit}.
 - > Smears drift distance with $\sigma_d = 0.2$ mm.
 - \triangleright Smears z_{hit} with $\sigma_z = 3$ mm.
- Direct least χ² fit:

Track model: 5-parameters helix,

$$\begin{cases} x = x_c + R \cos(\varphi + \varphi_0) \\ y = y_c + R \sin(\varphi + \varphi_0) \\ z = z_0 + s \cot \alpha \end{cases}$$

Minimizer: Newton and CG,

Minimizes:

$$f(x_c, y_c, R) = \sum_{i} \min \left(\sqrt{(x_i - x_c)^2 + (y_i - y_c)^2} - (R \pm d_i) \right)$$

*To be updated after full reconstruction.

Track Reconstruction

15 geometry designs have been evalulated:

- Inner radius: 20~60 cm,
- Outer length 1.2~2 m,
- # sense layers: 12~24,
- Identical solid angle: 89.4% (out).

Conclusions:

- For # sense layers >15, reach the limit of reconstruction efficiency and charge identification capability.
- Choose the benchmark design: inner/outer radius 15/45cm, inner/outer length 90/180cm, 18 sense layers.
- The resolution is limited by the naive reconstruction algorithm. It's excepted to achieve charge error rate<10-5, momentum resolution<500keV/c.

^{*}To be updated after full reconstruction.

Outlook of Drift Chamber Design

- We have developed an algorithm to generate the drift chamber geometry, allowing us to evaluate and optimize the geometry design of drift chamber.
- We have performed the fast simulation using the simple and classical DOCA method.
- Fast simulation data can be smeared according to the spartial resolution of the drift cells.
- Tracks reconstructed from the smeared data will carry the resolution information of the detector: planned to implement Kalman filter, improvement on the way.

- Motivation
- Conceptual Design of MACE

> Muonium Production: Simulation and Optimization

→ Drift Chamber Design and Simulation

➤ Offline Software R&D

- Preliminary analysis
- Summary

MACE Offline Software

MACE Offline Software

- MACE offline software: designed for experiment R&D, simulation, and offline reconstruction.
- Preliminary software framework has been established, including / allowing:
 - Simulation of the experiment / detectors
 - Large-scale parallel computing with MPI on supercomputer
 - Data model and data I/O
 - Geometry and material interface
 - Detector parameters management and I/O
 - ...
- Designed and programmed with C++ best practice and pattern clear code style and design for future.
- Currently, main tasks:
 - Develop offline track reconstruction module.
 - Refine physics processes.
 - Improve and API and UI.

- Motivation
- Conceptual Design of MACE

Muonium Production: Simulation and Optimization

Drift Chamber Design and Simulation

Offline Software R&D

Preliminary analysis

Summary

Monte Carlo: Fast Simulation

- Backgrounds:
 - \triangleright μ^+ decays to e^+ , Bhabha scattering to generate high-energy e- in coincident with low-energy e⁺

Analysis of Simulated Data

- Injected muons: 2×10^8 of μ^+
- Resolution better than PSI muonium formation results.
- At the same vertex:

 $|\Delta R| \sim DCA < 12.0 \text{ mm}$

• At the same time:

$$|\Delta t|$$
~TOF-TOF_{expected}~TCA< 4.5 ns:

$$TOF = t_0 + t(z)$$

*To be updated after full reconstruction.

- Motivation
- Conceptual Design of MACE

> Muonium Production: Simulation and Optimization

→ Drift Chamber Design and Simulation

>Offline Software R&D

- Preliminary analysis
- Summary

Summary

- cLFV, a neutrino-less lepton flavor violating process, is forbidden in SM. Precise (high-intensity) experiment searching for cLFV, is an sensitive probe of BSM.
- MACE is the first proposed muonium-to-antimuonium conversion experiment since 1999, with the development of high-intensity muon beam and detector technology, the sensitivity is expected to enhance by more than two orders of magnitude.
- Together with other flavor and collider searches, MACE will shed light on the mystery of the cLFV and new physics.

Muonium-to-Antimuonium Conversion Experiment

$$\mu^+e^- \rightarrow \mu^-e^+$$

THANK YOU

Monte Carlo: Fast Simulation

- 1. Preliminary results in simulation
- 1.056×10^{8} of μ^{+}
- BR of $\mu^+ \rightarrow e^+ e^- e^+ \nu_e \overline{\nu_\mu}$ is set to 100%.
- 2. Compared with PSI estimates
- 9.459 \times 10⁷ of μ ⁺ Rare decay
- 1.7 background events expected.

• Happen at the same vertex:

$$|\Delta R| \sim R_{dca} < 12.0 \text{ mm}$$

• Happen at the same time:

$$|\Delta t| \sim TOF - TOF_{expected} < 4.5 \text{ ns}$$
:
 $TOF = t0 + t(z)$

Courtesy: Yu-Zhe Mao

Cross check and improvement on the way.