Muonium Spectroscopy

Dave Kawall, University of Massachusetts Amherst

Acknowledgements:

Supported by US DOE DE-FG02-88ER40415

MuSEUM material: Tsutomu Mibe, Shoichiro Nishimura, Koichiro Shimomura, Sohtara Kanda Mu-MASS material: Paolo Crivelli

Workshop on a Future Muon Program at Fermilab, Mar 27-29 2023, Caltech

Muonium Energy Levels

- Hydrogen-like, but purely leptonic, free of nuclear size effects
- Can produce nearly $10^8/s$
- Live 2.2 $\mu {\rm s},$ linewidth 145 kHz
- Amenable and interesting for precision spectroscopy
- Extract important constants
- Test bound state QED, search for new physics

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} \frac{\mu'_p(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

Muonium Ground State Hyperfine Interval Theory Prediction

- = 4463.302868(515) MHz, (120 ppb)
- = 4463.302720 (511, m_{μ}/m_{e}) (70, QED) (2, α) MHz (QED Contribution) + -65 Hz (Weak Contribution, 15 ppb) + 232 (1) Hz (Hadronic Vacuum Polarization Contribution, 56 ppb) + 5 (2) Hz (Higher order Hadronic Vacuum Polarization Contribution)
- Largest error from uncertainty in m_{μ}/m_e (120 ppb)
- Error from higher order terms $\approx~70$ Hz (16 ppb)
- Effort to reduce QED uncertainty to 10 Hz (M. Eides and colleagues)

Phys. Rev. A 86, 024501 (2012), PRL 112, 173004 (2014), Phys. Rev. D 89, 014034 (2014)

$$H = h \Delta
u \mathbf{I}_{\mu} \cdot \mathbf{J} - g'_{\mu} \mu^{\mu}_{B} \mathbf{I}_{\mu} \cdot \mathbf{H} + g_{J} \mu^{e}_{B} \mathbf{J} \cdot \mathbf{H}$$

- Energy of $e \cdot \mu$ spin-spin interaction characterized by hyperfine interval $\Delta \nu \approx 4463$ MHz
- Binding corrections to gyromagnetic ratios :

$$g'_{\mu} = g_{\mu} \left(1 - \frac{\alpha^2}{3} + \frac{\alpha^2}{2} \frac{m_e}{m_{\mu}} \right)$$
$$g_J = g_e \left(1 - \frac{\alpha^2}{3} + \frac{\alpha^2}{2} \frac{m_e}{m_{\mu}} + \frac{\alpha^3}{4\pi} \right)$$

- Two spin 1/2s in a magnetic field \Rightarrow 4 substates
- \bullet Good quantum numbers : $\mathbf{F}=\mathbf{I}_{\mu}+\mathbf{J}$, $M_{\mathbf{F}}$

$$E_{\mathbf{F}=\frac{1}{2}\pm\frac{1}{2},M_{\mathbf{F}}} = -\frac{1}{4}h\Delta\nu - g'_{\mu}\mu^{\mu}_{B}M_{\mathbf{F}}H \pm \frac{1}{2}h\Delta\nu\sqrt{1+2M_{\mathbf{F}}x+x^{2}}$$

where $x = (g_{J}\mu^{e}_{B} + g'_{\mu}\mu^{\mu}_{B})H/h\Delta\nu \approx H(kG)/1.58$

• Out of six possible transitions, consider two :

$$(\mathbf{F}, M_{\mathbf{F}}) \iff (\mathbf{F}', M'_{\mathbf{F}})$$
$$\nu_{12} = (1, 1) \iff (1, 0)$$
$$\nu_{34} = (1, -1) \iff (0, 0)$$

Muonium Spectroscopy, D. Kawall, UMass Amherst

n a strong field
$$x \gg 1$$
: $(M_J, M_\mu) \iff (M'_J, M'_\mu)$
 $\nu_{12} \approx \left(\frac{1}{2}, \frac{1}{2}\right) \iff \left(\frac{1}{2}, -\frac{1}{2}\right)$
 $\nu_{34} \approx \left(-\frac{1}{2}, -\frac{1}{2}\right) \iff \left(-\frac{1}{2}, \frac{1}{2}\right)$

- The two microwave transitions measured roughly correspond to muon spin flip

 x: measure of Zeeman, Larmor frequency compared to ground state hyperfine interval frequency From ν_{12} and ν_{34} to $\Delta \nu$, μ_{μ}/μ_{p} , and m_{μ}/m_{e}

 \bullet Use the Larmor relation to express the magnetic field, H, in terms of the proton NMR frequency, ν_p :

$$h\nu_p = 2\mu_p H$$

• Then the transition frequencies are given by :

$$\nu_{12} = -\nu_p \frac{g'_{\mu} \mu_{\mu}}{g_{\mu} \mu_p} + \frac{\Delta \nu}{2} \left[(1+x) - \sqrt{1+x^2} \right]$$

$$\nu_{34} = +\nu_p \frac{g'_{\mu} \mu_{\mu}}{g_{\mu} \mu_p} + \frac{\Delta \nu}{2} \left[(1-x) + \sqrt{1+x^2} \right]$$

• If we measure u_{12} and u_{34} in the same magnetic field :

$$\nu_{12} + \nu_{34} = \Delta \nu$$

$$\nu_{34} - \nu_{12} = 2\nu_p \frac{g'_{\mu}}{g_{\mu}} \frac{\mu_{\mu}}{\mu_p} + \Delta \nu \left[\sqrt{1 + x^2} - x\right]$$

small

• Knowing u_{12} , u_{34} , and u_p yields $\Delta
u$ and μ_{μ}/μ_p .

Muonium Spectroscopy, D. Kawall, UMass Amherst

From u_{12} and u_{34} to $\Delta
u$, μ_{μ}/μ_{p} , and m_{μ}/m_{e}

• We can derive m_{μ}/m_e from direct measurement of μ_{μ}/μ_p through the relation :

$$rac{m_\mu}{m_e} = rac{g_\mu}{2} \; rac{\mu_p}{\mu_\mu} \; rac{\mu_B^e}{\mu_p}$$

• Alternatively, theoretical prediction for $\Delta
u$ is a function of m_μ/m_e :

$$\Delta\nu(\text{theory}) = \frac{16}{3} \alpha^2 c R_{\infty} \frac{m_e}{m_{\mu}} \left[1 + \frac{m_e}{m_{\mu}}\right]^{-3} (1+\Delta)$$

- Can measure $\Delta \nu$, solve for m_{μ}/m_e .
- Gives more precise result, but result depends on the theory

- Free particle tests of QED (a_e, a_μ) performed at 5 loops in QED
- Free particle QED is the most successful theory in all of science
- Bound-state QED investigated by hydrogen & muonium HFS, 1s-2s, ... calculations performed at 2-3 loops
- Muonium tests bound-state QED *methods* without complications of proton structure, electron-electron interactions, or strong coupling (binding $(Z\alpha)^2 m_\mu c^2$ small)
- We extract m_{μ}/m_{e} using bound-state QED and measurement of muonium ground-state hyperfine interval *but*:

"These two QED theories, the free QED and the bound state QED, are very different in their approaches, problems and applications and it is worth to consider their tests separately... the bound state QED is not a well-established theory and there are no published common prescriptions for the relativistic quantum bound problem. It involves different effective approaches to solve the two-body bound problem."

S. Karshenboim, Physics Reports 422, 1-63 (2005).

- We have to be careful: success of free particle QED doesn't necessarily apply to bound state QED: saying we know m_{μ}/m_e to 22 ppb relies on:
 - Bound state QED methods applied to Mu HFS are correct at the 22 ppb level (need expert opinion for careful, conservative error estimation)
 - New physics doesn't perturb the hyperfine interval at the 22 ppb level
- We can extract m_{μ}/m_e essentially directly from *measurements* of μ_{μ}/μ_p from muonium which relies only on correctness of Breit-Rabi Hamiltonian, but still have some bound-state corrections
- Theory-independent ratio μ_{μ}/μ_{p} known to about 120 ppb: MuSEUM should improve this direct measurement by a factor 5
- To test compatibility of model of new physics with a_{μ} , just need to include its influence consistently when extracting m_{μ}/m_e from muonium

VOLUME 82, NUMBER 4

High Precision Measurements of the Ground State Hyperfine Structure Interval of Muonium and of the Muon Magnetic Moment

W. Liu,¹ M.G. Boshier,¹ S. Dhawan,¹ O. van Dyck,² P. Egan,³ X. Fei,¹ M. Grosse Perdekamp,¹ V.W. Hughes,¹ M. Janousch,^{1,4} K. Jungmann,⁵ D. Kawall,¹ F.G. Mariam,⁶ C. Pillai,² R. Prigl,^{1,6} G. zu Putlitz,⁵ I. Reinhard,⁵ W. Schwarz,^{1,5} P.A. Thompson,⁶ and K. A. Woodle⁶
¹Department of Physics, Yale University, New Haven, Connecticut 06520-8121
²Los Alamos National Laboratory, Los Alamos, New Mexico 87545
³Lawrence Livermore National Laboratory, Livermore, California 94550
⁴ETH Zürich, Institute for Particle Physics, CH-5232 Villigen-PSI, Switzerland
⁵Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
⁶Brookhaven National Laboratory, Upton, New York 11973 (Received 21 August 1998)

High precision measurements of two Zeeman hyperfine transitions in the ground state of muonium in a strong magnetic field have been made at LAMPF using microwave magnetic resonance spectroscopy and a resonance line narrowing technique. These determine the most precise values of the ground state hyperfine structure interval of muonium $\Delta \nu = 4463302765(53)$ Hz (12 ppb), and of the ratio of magnetic moments $\mu_{\mu}/\mu_{p} = 3.18334513(39)$ (120 ppb), representing a factor of 3 improvement. Values of the mass ratio m_{μ}/m_{e} and the fine structure constant α are derived from these results.

$\Delta \nu = 4\,463\,302\,765\,(53)$ Hz (12 ppb) (50 Hz (stat) and 21 Hz (syst)) $m_{\mu}/m_{e} = 206.768\,2830\,(46)$ (22 ppb, CODATA 2018)

Muonium Spectroscopy, D. Kawall, UMass Amherst

New precise spectroscopy of the hyperfine structure in muonium with a high-intensity pulsed muon beam

S. Kanda^{a,*,1}, Y. Fukao^{b,d,e}, Y. Ikedo^{c,d}, K. Ishida^a, M. Iwasaki^a, D. Kawall^f, N. Kawamura^{c,d,e}, K.M. Kojima^{c,d,e,2}, N. Kurosawa^g, Y. Matsuda^h, T. Mibe^{b,d,e}, Y. Miyake^{c,d,e}, S. Nishimura^{c,d}, N. Saito^{d,i}, Y. Sato^b, S. Seo^{a,h}, K. Shimomura^{c,d,e}, P. Strasser^{c,d,e}, K.S. Tanaka^j, T. Tanaka^{a,h}, H.A. Toriiⁱ, A. Toyoda^{b,d,e}, Y. Ueno^a

^d Japan Proton Accelerator Research Complex (J-PARC), 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan

^f University of Massachusetts Amherst, 1126 Lederle Graduate Research Tower, Amherst, MA 01003-9337, USA

^g Cryogenic Science Center, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

^h Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan

¹ School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

^j Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan

Goal: Stat. and Syst. uncertainties on $\Delta \nu \approx 5$ Hz (1.2 ppb) each, 40 days running Uncertainty on $m_{\mu}/m_e \approx 12$ ppb directly If theory uncertainty $\Rightarrow 10$ Hz, $\delta(m_{\mu}/m_e) \approx 3$ ppb using bound state QED theory

Muonium Spectroscopy, D. Kawall, UMass Amherst

Workshop on a Future Muon Program at Fermilab, Mar27-29 2023, Caltech

Check for

^a RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

^b Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

^c Institute of Materials Structure Science, KEK 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

^e Graduate University of Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Present: MuSEUM Experiment at J-PARC

Muonium Spectroscopy, D. Kawall, UMass Amherst

Beam Lines used for Muonium Spectroscopy at J-PARC MLF MUSE

Muonium Spectroscopy, D. Kawall, UMass Amherst

Workshop on a Future Muon Program at Fermilab, Mar 27-29 2023, Caltech

Experimental Technique

- Pion decays at rest yield 28 MeV/c muons, spin polarized opposite to momentum
- Transport μ^+ to Kr gas target (0.3 atm or 1.0 atm) in 1.7 T field along beam axis
- Muons thermalize, picks up e^- from Kr, forms polarized n=1 muonium in $|m_J, m_\mu\rangle = |+1/2, -1/2\rangle$ and $|-1/2, -1/2\rangle$

Experimental Technique

- If we do nothing, muon decays: $\mu^+ \to e^+ \bar{\nu}_\mu \nu_e$
 - \Rightarrow Due to parity violation, highest energy e^+ emitted preferentially in μ^+ spin direction (upstream)
- NMR: apply a perpendicular microwave magnetic field at the ν_{12} or ν_{34} transition frequency:
 - $\Rightarrow\,$ Zeeman transition flips the muon spin direction highest energy e^+ emitted downstream
 - $\Rightarrow~\Delta\nu$ determined from microwave frequency dependence in counts downstream/upstream

Experimental Technique

- If we do nothing, muon decays: $\mu^+ \to e^+ \bar{\nu}_\mu \nu_e$
 - \Rightarrow Due to parity violation, highest energy e^+ emitted preferentially in μ^+ spin direction (upstream)
- NMR: apply a perpendicular microwave magnetic field at the ν_{12} or ν_{34} transition frequency:
 - \Rightarrow Zeeman transition flips the muon spin direction highest energy e^+ emitted downstream
 - $\Rightarrow~\Delta\nu$ determined from microwave frequency dependence in counts downstream/upstream

New MuSEUM Experimental Technique: Rabi-oscillation spectroscopy

• Signal depends on microwave detuning, microwave power, magnetic field, detector acceptance

- Los Alamos: looming systematic of asymmetry in microwave power across line
- MuSEUM: Rabi-oscillation: fit signal time dependence to get detuning, microwave power

New MuSEUM Experimental Technique: Rabi-oscillation spectroscopy

MuSEUM Rabi-oscillation spectroscopy results at zero B field: PRA 104, L020801 (2021)

Muonium Spectroscopy, D. Kawall, UMass Amherst

Workshop on a Future Muon Program at Fermilab, Mar27-29 2023, Caltech

MuSEUM Improvements, Comments

- Muon flux roughly $10^8/s$, roughly $10 \times$ Los Alamos, expect roughly 200 times more statistics
- Reduced MW-related uncertainties, improved MW power monitoring, Rabi-oscillation technique
- Longer cavity (more stopped muons), lower gas pressure (smaller uncertainty from pressure shift)
- Improved muon beam and stopping distribution measurements (higher resolution detector)
- High-rate capable segmented positron counters (reduced pileup systematics)
- Improved, higher resolution NMR system, reduced detector impact on magnetic field
- Improved, redundant pressure monitoring systems

• Pressures shifts
$$\frac{d\nu_{12}}{dP} \approx -16.4 \, {\rm kHz/atm}, \ \frac{d\nu_{34}}{dP} \approx -19.6 \, {\rm kHz/atm}$$

- HF pressure shifts in Cs (W. Happer, Rev. Mod Phys. 44, 169 (1972).)
- Combine Kr with He or Ne to produce target gas with near-zero presssure shift; might also make more compact stopping distribution, reducing many systematics
- Telegdi: run at "magic" B=1.134 T where $d\Delta \nu_{ij}/dB = 0$, insensitive to B field 9 192.6

EHzürich

Mu-MASS (MuoniuM lAser SpectroScopy)

P. Crivelli, I. Cortinovis, L. De Sousa Borges, A. Golovizin, B. Ohayon, N. Zhadov ETH Zurich, Institute for Particle Physics and Astrophysics (IPA), 8093 Zurich, Switzerland

T. Prokscha, G. Janka, X. Ni, Z. Salman, A. Suter PSI, Laboratory for Muon Spin Spectroscopy (LMU), 5232 Villigen, Switzerland

A. Antognini, K. Kirch, A. Soter PSI, Laboratory for Particle Physics (LTP), 5232 Villigen, Switzerland and ETH Zurich, Institute for Particle Physics and Astrophysics (IPA), 8093 Zurich, Switzerland

> A. Knecht PSI, Laboratory for Particle Physics (LTP), 5232 Villigen, Switzerland

> > D. Yost Colorado State University (CSU), Colorado, USA

PAUL SCHERRER INSTITUT

https://www.psi.ch/en/ltp/mu-mass

Mu-MASS material: Paolo Crivelli

Muonium Spectroscopy, D. Kawall, UMass Amherst

Irene Cortinovis et al., arXiv:2302.22883v3

Mu-MASS: Measure 1S-2S transition with Doppler free laser spectroscopy GOAL: improve by 3 orders of magnitude (10 kHz, 4 ppt)

OUTPUT

- → Muon mass @ 1 ppb
- → Ratio of q_e/q_μ @ 1 ppt
- → Search for New Physics
- \rightarrow Test of bound state QED (1x10⁻⁹)
- → Input to muon g-2 theory
- → Rydberg constant @ ppt level
- → New determination of α @ 1 ppb

Mu-MASS: Experimental Technique (Paulo Crivelli)

Mu-MASS Current Status

- Extremely challenging, few events per days, low background required (and demonstrated)
- Have demonstrated >25 W circulating laser power in QCW mode
- Triggerable 355 nm pulse laser for ionization ready
- Took data Dec 2023, physics runs in 2023-2024

Lamb shift measurements by Mu-MASS at LEM at PSI: Paulo Crivelli

- Measured n=2 Lamb shift: $1047.2(2.3)_{stat}(1.1)_{syst}$ MHz, factor 10 improvement
- Precision measurement of the Lamb shift in Muonium, B. Ohayon *et al.*, arXiv:2108.12891v2

Lamb shift measurements by Mu-MASS at LEM at PSI: Paulo Crivelli

PHYSICAL REVIEW LETTERS 127, 251801 (2021)

Towards an Independent Determination of Muon g-2 from Muonium Spectroscopy

Cédric Delaunay⁰,^{1,*} Ben Ohayon⁰,^{2,†} and Yotam Soreq^{3,‡} ¹Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, CNRS—USMB, BP 110 Annecy-le-Vieux, F-74941 Annecy, France ²Institute for Particle Physics and Astrophysics, ETH Zürich, CH-8093 Zürich, Switzerland ³Physics Department, Technion—Israel Institute of Technology, Haifa 3200003, Israel (Received 28 July 2021; accepted 15 November 2021; published 15 December 2021) Muonium ongoing We show that muonium spectroscopy in the coming years can reach a precision high enough to determine the anomalous magnetic moment of the muon below one part per million (ppm). Such an independent determination of muon g - 2 would certainly shed light on the ~ 2 ppm difference currently observed between spin-precession measurements and (R-ratio based) standard model predictions. The magnetic dipole interaction between electrons and (anti)muons bound in muonium gives rise to a hyperfine splitting (HFS) of the ground state which is sensitive to the muon anomalous magnetic moment. A direct comparison of the muonium frequency measurements of the HFS at J-PARC and the 1S-2S transition at PSI with theory predictions will allow us to extract muon g - 2 with high precision. Improving the accuracy of QED calculations of these transitions by about 1 order of magnitude is also required. Moreover, the good agreement between theory and experiment for the electron q - 2 indicates that new physics interactions are unlikely to affect muonium spectroscopy down to the envisaged precision.

DOI: 10.1103/PhysRevLett.127.251801

 $\Delta\nu\approx\frac{8\pi}{3}g'_e\mu_Bg'_\mu\mu_B^\mu\frac{1}{\pi a_{\mu}^3}$ $\vec{\mu}_{\ell} = g_{\ell} \left(\frac{q_{\ell}}{2m_{\ell}} \right) \vec{S}_{\ell},$

Measure magnetic moment at ppb level, get a_{μ} at or below 1 ppm level

Muonium Spectroscopy, D. Kawall, UMass Amherst

12

14

ultimate ––––– BNL+FNAL 2021 SM (BMWc-lattice) SM (*R*-ratio) 22 16 18 2024 $a_{\mu} \times 10^9 - 1165900$

28

Muonium Spectroscopy: Summary

- Some extremely interesting, challenging, and consequential experiments underway
- Improvements by factor 10-20 in muon mass possible
- Long term possibility of sensitivity to new physics
- New, more intense source of low energy muons, surface muons would help