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(I feel silly giving this talk since all of you know this already)
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What is AMF?

e Advanced Muon Facility

e goal is to build a one-stop muon program for all three

muon CLFV experiments and muonium-antimuonium
oscillations

e using PIP-Il and Booster Replacement program
e at orders-of-magnitude beyond planned experiments
e | am not going to talk much about detectors

 not significantly past Mu2e/COMET for uy™ N — e¢™ N

 will need new concepts for 4 — ey, 3e
R. Bernstein, FNAL 2 Future Muon Program



AMF Problems

e How do we supply beam to both stopped muon
and conversion experiments?

e do we build two facilities, one with a stopped
beam a la PS| and another for conversion?

e can we make one beamline that does both?

e How can we target > 100 kW in a
superconducting solenoid?

e closely related to muon collider R&D

e discussions underway (Porter, STFC)
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How Well Do we Need to Do?

S. Davidson and B. Echenard, 2010.00317 [hep-ph]
e Write EFT Lagrangian:

e Dipole (4 — ey) +
Contact Scalar (4 — 3e). +
Contact Vector (4 — 3e)r +
Contact uN — eN (light nuclei) +
Contact ulN — eN (heavy nuclei)

e Parameterize coefficient space with spherical
coordinates: lets you express constraints on all three
processes simultaneously

e Will show you “slices” in the multi-dimensional space
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https://arxiv.org/abs/2010.00317

Physics Goals

If you're going something new, push a couple of
orders of magnitude
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S. Davidson and B. Echenard, 2010.00317 [hep-ph]
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https://arxiv.org/abs/2010.00317

Physics Goals

 one can obviously tweak the values of & and ¢ but
as a general goal:

e u — ey: O(1070)
. 1 — 3e: O(10719)
e u”N — e~ N: 6(10~%=1%) on high Z

« et o uTe” x100 existing to about 1()_5GF
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Conversion Experiments
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Why High Z?

® MOdel — Z Penguin — Charge Radius — Dipole — Scalar
Discrimination

e Linkage to other
experiments
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* A beam pulse is ~250
ns FWHM

* You can’t do an
experiment inside the
debris from the beam
pulse

* And therefore you can’t
go to high Z: Ti about
limit
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One Conceptforu N — e N

e FFA (PRISM) is essentially a muon storage ring

e \Wait out 7 decays in the beam, produce a pure,

cold muon beam

Detector Solenoid

Spectrometer Solenoid

..............
Tasget

Muon Storage Ring

(Phase Rotator) Pion and Muon

Transport Solenoid
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Advantages of PRISM

 \We no longer have a "beam flash™ as in MuZ2e or
COMET

e can spill out muons slowly and no longer sit in the
beam pulse

e go for Gold!
e Conversion
Nucleus Rue(Z) I Rue(Al) Bound Lifetime -
Al(13,27) 1 864 nsec 104.96 MeV
Ti(22,~48) 1.7 328 nsec 104.18 MeV
Au(79,~197) ~0.8-1.5 /2.6 nsec 95.56 MeV
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Detector Technical Challenges
e u”N—>e N
e halving momentum resolution on signal ¢
* not just making Mu2e straws thinner
e rethink detector design

e dominant background (we think) will be cosmic ray
production of electrons in signal region

e a CRV x100-x1000 better than Mu2e

e multiple systems?
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Detector/Solenoid
“Interference”

e Still have activity from muon
capture .

e if x100 or so in rate, how dOE€S jetector Solenoid
detector survive?

* May need a curved detector
solenoid like PRIME (the
“Guggenheim” design)

e pbut then we lose simultaneous
u™N— e N
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Decay Experiments

R. Bernstein, FNAL 14 Future Muon Program



Decay Experiments

e T > eTyand ut — etete”

o these bring low energy (~ 30 MeV) u™ to rest in
material and observe the decay (surface muon)

e inut — ey, accidentals scaling as I” are the

limit; accidentals come from multiple muon decays
and resolution limits

e since accidentals drive the background, we
want as continuous a beam as possible

e inut — eteTe™, additional bkg from radiative
muon decay, u* — eTeTe v, U, with small E,
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U — ey Limits
e 4 — eTyasin MEG, but convert the photon for
Improved resolution (have a vertex from tracks)

* lowers statistics by ~x100 but improves
background rejection
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Decay Experiments:

e |taly and Japan MEG groups are thinking about
how to go beyond MEG-II design

e Can MuZ2e people help?

 \We might also want to think about a detector
that does both 1 — ey and u — 3e

 Two-body and three-body decay modes
have very different kinematics — MEG uses
back-to-back at the core of the design

e not clear to me at least this has a solution

R. Bernstein, FNAL 17 Future Muon Program



Single Beam to Both Experiments

e Arrival time for a delta-function beam like PIP-II

e this uses Mu2e geometry but idea is the same: lower
momentum muons take longer to arrive

e Slow down beam to constant momentum with time-
varying deceleration

longitudinal momentum vs time . hPzVsT |

’ Entries 260722

Mean x 198.9

Mean y 4198

StDevx 7868

] Std Devy 1549
time (ns) o2t
- : o + 1“ * ° 1
i ) |0 255486 5015
0 35

serious MC
needed

omentum (MeV/c)

100

°o88888

)" 10-15 MeV instead of 29.6

R. Bernstein, FNAL 18 Future Muon Program




Why Would we want lower
momentum?

e u—ey (MEG) is a two-body process: 6., =180
RHB and PS Cooper, https://arxiv.org/abs/1307.5787

* Dependence of background on resolutions:
R, AE, [ AE, \?[Af.)\"
S Ae & y ey
5« () s () (557)

* |f you don’t convert the photon, and use B-field to measure p.

et track
R—

* Range straggling grows as
AR ~ T1'75 at these momenta

e if enough stopped muons, Y AR—A0,,

then can trade y-conversion
(~1% X,) rate for three-track

vertex =this facility
R. Bernstein, FNAL 19 stopping targ@

e photon point

wture Muon Program



Or Two Facilities

e PSI| has a stopped muon beam at 1MW
e Steal their work

e Muon Physics only gets a small amount of this
1MW at PSI; we could have all of it

e But then we need to duplicate an expensive
facility

e on the other hand it might be more flexible
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e For same
reasons as
MuZ2e-Il, AMF
would like 2
GeV

e but bunched
beam has to
go into a
compressor
ring to
rebunch

R. Bernstein, FNAL

PIP-II

Bunch separation from
/ PIP-II (6, 12, or 25 ns)
tsep

PIP-1l bunches I

Injection can be de-phased to
lengthen (“paint”) bunches in ring

FIG. 4. Schematic illustration of injection into the compressor ring. Beam is distributed both transversely
and longitudinally.

t,=12.2ns

tep=12.2 ns

=20.3 MHz =40.6 MHz
f
P, =500 kW P, =1000 kW

FIG. 5. Two possibilities for a 100 m compressor ring. The ring on the left shows 20 MHz bunches, each 12
ns long, separated by 37 ns. This ring would reach a total power of ~ 500kW. To achieve 1 MW, a bunch
frequency of 41 MHz would be needed (right ring), but this would represent a challenge for the extraction
kicker.
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Production Solenoid

e MuZ2e at 8 kW requires a complicated heat and radiation
shield to keep superconductor from quenching; COMET
proposes 56 kW

e Conceptual designs exist for 100 kW
* "moving mass” target and thicker shield: Vitaly’s LDRD

* AMF would provide world-class physics at high-Z ; 100
KW is just the first step

e \arious ideas for 1MW have been promoted

e 1 targets for NOVA get to nearly 1TMW...why so hard?

e not inside a superconductor ‘“
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1 MW targeting

e MERIT experiment
https://aip.scitation.org/doi/pdf/10.1063/1.3399332

e Liquid mercury — this is an environmental
problem (Minamata Convention)

 Rep rates only about 70 Hz, limited by disruption
of the jet. We need x10 faster

e MERIT is not a proof as is sometimes claimed
e SNS moved to rotating tungsten

e Discussion of muon collider targetry: https://
indico.cern.ch/event/1016248/contributions/
4282384 /attachments/2215324/3752155/
MCa__ MUC_Targetry__ 25Mar2021_v1.pdf
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If you're not scared by now

e you're not paying attention. Put your
superconducting solenoid in the NuMI target

chase

9) Target Chase Supplemental Shielding

A36 steel » Protect personnel during
maintenance and
beamline components
~ changeout activities
Aoy " _4 0 » Reduce cool-down time
e - ; needed
— ” oy
I T e

Used in2019 summer shutdown
e, __m

ShieldingPlates (qty. 3)
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FFA

e PRISM (Phase Rotated Intense Source of Muons)
(arXiv:1310.0804 [physics.acc-ph])

Energy

g
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https://arxiv.org/abs/1310.0804

Fermilab’s ACE

e ACE = Accelerator Complex Enhancement

 Replaces Booster (50 years old and something
bad will break)

e Coupled to PIP-Il linac

 Really designed around DUNE but might be
great for us; just not clear now
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ACE

e We want 2 GeV pulsed

Booster replacement scenarios

S. Valishev, https://indico.fnal.gov/event/58272/

Considered 6 Configurations: 3 SRF Linac, 3 Rapid-Cycling Synchrotron (RCS)
In addition to 2.4MW to LBNF, the options enable new science ‘spigots’:

C 2 GeV Continuous wave (CW)

— 2 GeV Pulsed Beam (~ 1MW)
= 8 GeV Pulsed (~ 1MW)

RCS Configurations:

C1a) 10 Hz: metallic vac. chamber

C1b) 20 Hz: ceramic vac. chamber

C1c) 20 Hz: ceramic vac. chamber, high current linac
The specific upgrade scenario to be
selected and developed with community

22 3/21/23 Valishev | Fermilab Accelerator Complex Evolution

input and informed by P5 and DOE decisions [

R. Bernstein, FNAL

SRF Linac Configurations:

C2a) Basic: small increase in PIP-II current,
demonstrated XFEL RF

C2b) High duty factor RF source: small increase in
PIP-1l current

C2c) Higher Current PIP-II: significant current
upgrade (5mA)

} 2% Fermilab
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One ACE Configuration

e | don’t have numbers, but this might be our
compressor ring feeding FFA.

e Will have to talk to the Lab

Example 1
Configuration C1b:

+ 20Hz RCS + 2 GeV AR

« Main elements *‘ Nt Hes /’po'ssigi‘e
-3 (BN i ¥ 2 GeV Ring

— 1-2GeV Linac

— 20Hz 8GeV RCS

— 2 GeV Accumulator Ring
— MI Upgrades

— Transfer Lines

J £= Fermilab

23 3/21/23 Valishev | Fermilab Accelerator Complex Evolution [
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Muonium-Antimuonium

p : T O ®— K
AT
: WR‘. ._WL
- 6_|_ o @ _ @ 6+
(a) (b)
ut et put : T
S = ~aF 3N Xt
[ <~ ;
H € H € e~ w e~ : et

(©
* Leptoquarks, doubly charged Higgs,
Heavy Majorana neutrinos,...

* New interactions break degeneracy

. Not unlike K°K’system

e Usually parameterize interaction strength as G/Gr

R. Bernstein, FNAL 29 Future Muon Program



Math

Probability of antimuonium decay from

05 an initially pure muonium state

04
Muon Lifetime
a5 x10' for G,,77/Gr =3 x 107°
02
0.1 ;
G5 /G = 1000
0 | | | 2 | | | 4 | | 6 | | 8 | 10

time (usec)

best paper on muonium-antimuonium theory:
G. Feinberg and S. Weinberg, Phys.Rev. 123, 1439 (1961).

R. Bernstein, FNAL 30 Future Muon Program



Relevant Equations

0 8Gr (Gmum>

2 V2n2ma3 Gr

where n is the principal quantum number and a, is the Bohr radius of the
muonium atom. For n =1,

§ = 2.16x 1012 oVt eV
GFr

Assuming an initially pure e~ state, the probability of transition is given by:

ot
.2 At
P(t) = sin (2h) Ape

where A\, is the muon lifetime. Modulating the oscillation probability against
the muon lifetime tells us the maximum probability of decay as anti-muonium
occurs at tmax = 27,. The overall probability of transition is

G _
Ptotal = 25X 10_3 (—l\él;Mu)
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Beautiful Experimental Methods

e How do you make muonium?
 make a sub-surface beam

e sub-surface beams stop inside, not on surface, and have a
lower momentum distribution than surface beams

 this yields a smaller straggling by 4R~p3-5and a tighter
spatial stopping distribution

* |et the positive muons stop in SiO2 powder, a technique
invented at TRIUMF

* The powder structure stops the positive muon and the voids
permit the muonium to escape
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* MACS at PSI

Experiment
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MWPC annihilation | 27@
beam counter photons T 1T
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u Mu2
e

Willmann, L., et al. (1999), Phys. Rev. Lett. 82, 49.

Signal and Background

G/Gr < 3.x1072@90 % CL

e Signal:

i decay (e near Michel peak)
in coincidence with e™

* Backgrounds:

1. The rare decay mode u* — etete 1.0, with a branching ratio of 3.4 x
10~°. If one of the positrons has low kinetic energy and the electron is
detected, this channel can fake a signal.

2. The system starts as muonium, hence u™ — e*v,., yields a positron.
If the e™ undergoes Bhabha scattering, an energetic electron can be pro-
duced. Background results from the coincidence of that scattering with a
scattered e’. The positron’s time-of-flight is is used to reject background.

e¢'e” — e’e”, annihilation or scattering
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H O W tO d O b e tt e r ; Probability of antimuonium decay from
u s an initially pure muonium state

yis
-\ Muon Lifetime
x10'%for G, 47/Gp =3 x 1072

0.1 L
LG4/ Gr = 1000 _
/R M f\;mm:‘
0 2 4 6 8 10

time (usec)

* Both backgrounds can be suppressed with a pulsed
beam and by waiting for the muon lifetime to suppress
the muon decay

e can make up the muon flux at a hotter beam, which
did not exist at the time of MACS

e Modern detectors have much better resolution

e discussions with experts: x100 should be achievable
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