

AMF: Physics Goals and General Description

R. Bernstein Future Muon Program at Fermilab Workshop Caltech

2203.08278

(I feel silly giving this talk since all of you know this already)

What is AMF?

- Advanced Muon Facility
 - goal is to build a one-stop muon program for all three muon CLFV experiments and muonium-antimuonium oscillations
 - using PIP-II and Booster Replacement program
 - at orders-of-magnitude beyond planned experiments
- I am not going to talk much about detectors
 - not significantly past Mu2e/COMET for $\mu^- N \rightarrow e^- N$
 - will need new concepts for $\mu \to e\gamma$, 3e

AMF Problems

- How do we supply beam to *both* stopped muon and conversion experiments?
 - do we build two facilities, one with a stopped beam à la PSI and another for conversion?
 - can we make one beamline that does both?
- How can we target > 100 kW in a superconducting solenoid?
 - closely related to muon collider R&D
 - discussions underway (Porter, STFC)

How Well Do we Need to Do?

S. Davidson and B. Echenard, 2010.00317 [hep-ph]

- Write EFT Lagrangian:
 - Dipole $(\mu \rightarrow e\gamma)$ + Contact Scalar $(\mu \rightarrow 3e)_{L}$ + Contact Vector $(\mu \rightarrow 3e)_{R}$ + Contact $\mu N \rightarrow eN$ (light nuclei) + Contact $\mu N \rightarrow eN$ (heavy nuclei)
- Parameterize coefficient space with spherical coordinates: *lets you express constraints on all three processes simultaneously*
- Will show you "slices" in the multi-dimensional space

Physics Goals

• If you're going something new, push a couple of orders of magnitude

S. Davidson and B. Echenard, 2010.00317 [hep-ph]

R. Bernstein, FNAL

5

Physics Goals

- one can obviously tweak the values of θ and ϕ but as a general goal:

•
$$\mu \rightarrow e\gamma$$
: $\mathcal{O}(10^{-15})$

•
$$\mu \rightarrow 3e$$
: $\mathcal{O}(10^{-16})$

- $\mu^- N \to e^- N$: $\mathcal{O}(10^{-18-19})$ on high Z
- $\mu^- e^+ \leftrightarrow \mu^+ e^- \times 100$ existing to about $10^{-5}G_F$

Conversion Experiments

Why High Z?

- Model Discrimination
- Linkage to other experiments

 $R^{Au}_{\mu \to e}$

 $R_{\mu \to e\gamma}$

20

15 12.5

10

5

7.5

17.5

2.5 $R_{\mu \to e}^{Al}$ about x7 in this model S_{13} V. Cirigliano, B. Grinstein, G. Isidori, M. Wise **PDG:** $(0.22 \pm 0.007) \times 10^{-3}$

R. Bernstein, FNAL

What's so hard about high-Z?

- A beam pulse is ~250 ns FWHM
- You can't do an experiment inside the debris from the beam pulse
- And therefore you can't go to high Z: Ti about limit

MU2e

One Concept for $\mu^- N \rightarrow e^- N$

- FFA (PRISM) is essentially a muon storage ring
- Wait out π decays in the beam, produce a pure, cold muon beam

skier's guide
hard but not new
really hard but not new

really hard AND new

Advantages of PRISM

- We no longer have a "beam flash" as in Mu2e or COMET
- can spill out muons slowly and no longer sit in the beam pulse
- go for Gold!

Nucleus	R _{µe} (Z) / R _{µe} (AI)	Bound Lifetime	Conversion Energy
AI(13,27)	1	864 nsec	104.96 MeV
Ti(22,~48)	1.7	328 nsec	104.18 MeV
Au(79,~197)	~0.8-1.5	72.6 nsec	95.56 MeV

R. Bernstein, FNAL

Detector Technical Challenges

- $\mu^- N \rightarrow e^- N$
 - halving momentum resolution on signal e^-
 - not just making Mu2e straws thinner
 - rethink detector design
 - dominant background (we think) will be cosmic ray production of electrons in signal region
 - a CRV x100-x1000 better than Mu2e
 - multiple systems?

Detector/Solenoid "Interference"

- Still have activity from muon capture
 - if x100 or so in rate, how does detector survive?
- May need a curved detector solenoid like PRIME (the "Guggenheim" design)
 - but then we lose simultaneous $\mu^- N \rightarrow e^+ N'$

Decay Experiments

R. Bernstein, FNAL

Decay Experiments

•
$$\mu^+ \rightarrow e^+ \gamma$$
 and $\mu^+ \rightarrow e^+ e^+ e^-$

- these bring low energy (~ 30 MeV) μ^+ to rest in material and observe the decay (surface muon)
- in $\mu^+ \rightarrow e^+ \gamma$, accidentals scaling as I^2 are the limit; accidentals come from multiple muon decays and resolution limits
 - since accidentals drive the background, we want as continuous a beam as possible
- in $\mu^+ \to e^+ e^+ e^-$, additional bkg from radiative muon decay, $\mu^+ \to e^+ e^+ e^- \nu_e \bar{\nu}_\mu$ with small E_ν

$\mu \rightarrow e\gamma$ Limits

- $\mu^+ \rightarrow e^+ \gamma$ as in MEG, but convert the photon for improved resolution (have a vertex from tracks)
 - lowers statistics by ~x100 but improves background rejection

Decay Experiments:

- Italy and Japan MEG groups are thinking about how to go beyond MEG-II design
- Can Mu2e people help?
- We might also want to think about a detector that does both $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$
 - Two-body and three-body decay modes have very different kinematics — MEG uses back-to-back at the core of the design
 - not clear to me at least this has a solution

Single Beam to Both Experiments

- Arrival time for a delta-function beam like PIP-II
 - this uses Mu2e geometry but idea is the same: lower momentum muons take longer to arrive
- Slow down beam to constant momentum with timevarying deceleration

Why Would we want lower momentum?

- $\mu \rightarrow e\gamma$ (MEG) is a two-body process: $\theta_{e\gamma} = 180$
- RHB and PS Cooper, https://arxiv.org/abs/1307.5787 Dependence of background on resolutions:

$$\mathcal{B} \propto (\frac{R_{\mu}}{D})(\Delta t_{e\gamma})\frac{\Delta E_e}{m_{\mu}/2} \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^2 \left(\frac{\Delta \theta_{e\gamma}}{2}\right)^2$$

- If you don't convert the photon, and use *B*-field to measure p_e
- Range straggling grows as $\Lambda R \sim T^{1.75}$ at these momenta
- if enough stopped muons, then can trade γ -conversion $(\sim 1\% X_o)$ rate for three-track vertex \Rightarrow this facility 19

Or Two Facilities

- PSI has a stopped muon beam at 1MW
- Steal their work
- Muon Physics only gets a small amount of this 1MW at PSI; we could have all of it
- But then we need to duplicate an expensive facility
 - on the other hand it might be more flexible

PIP-II

- For same reasons as Mu2e-II, AMF would like 2 GeV
- but bunched beam has to go into a compressor ring to rebunch

FIG. 4. Schematic illustration of injection into the compressor ring. Beam is distributed both transversely and longitudinally.

FIG. 5. Two possibilities for a 100 m compressor ring. The ring on the left shows 20 MHz bunches, each 12 ns long, separated by 37 ns. This ring would reach a total power of ~ 500 kW. To achieve 1 MW, a bunch frequency of 41 MHz would be needed (right ring), but this would represent a challenge for the extraction kicker.

Production Solenoid

- Mu2e at 8 kW requires a complicated heat and radiation shield to keep superconductor from quenching; COMET proposes 56 kW
- Conceptual designs exist for 100 kW
 - "moving mass" target and thicker shield: Vitaly's LDRD
- AMF would provide world-class physics at high-Z ; 100 kW is just the first step
- Various ideas for 1MW have been promoted
 - ν targets for NOvA get to nearly 1MW...why so hard?
 - not inside a superconductor

R. Bernstein, FNAL

1 MW targeting

• MERIT experiment

https://aip.scitation.org/doi/pdf/10.1063/1.3399332

- Liquid mercury this is an environmental problem (Minamata Convention)
- Rep rates only about 70 Hz, limited by disruption of the jet. We need x10 faster
- MERIT is not a proof as is sometimes claimed
- SNS moved to rotating tungsten
- Discussion of muon collider targetry: <u>https://</u> <u>indico.cern.ch/event/1016248/contributions/</u> <u>4282384/attachments/2215324/3752155/</u> <u>MCa_MUC_Targetry_25Mar2021_v1.pdf</u>

R. Bernstein, FNAL

If you're not scared by now

 you're not paying attention. Put your superconducting solenoid in the NuMI target chase

R. Bernstein, FNAL

FFA

 PRISM (Phase Rotated Intense Source of Muons) (arXiv:1310.0804 [physics.acc-ph])

R. Bernstein, FNAL

25

Fermilab's ACE

- ACE = Accelerator Complex Enhancement
- Replaces Booster (50 years old and something bad will break)
- Coupled to PIP-II linac
- Really designed around DUNE but might be great for us; just not clear now

ACE

• We want 2 GeV pulsed

S. Valishev, https://indico.fnal.gov/event/58272/

Booster replacement scenarios

Considered 6 Configurations: 3 SRF Linac, 3 Rapid-Cycling Synchrotron (RCS)

In addition to 2.4MW to LBNF, the options enable new science 'spigots':

- 2 GeV Continuous wave (CW)
- 2 GeV Pulsed Beam (~ 1MW)
- 8 GeV Pulsed (~ 1MW)

RCS Configurations:

C1a) 10 Hz: metallic vac. chamber

C1b) 20 Hz: ceramic vac. chamber

C1c) 20 Hz: ceramic vac. chamber, high current linac

The specific upgrade scenario to be selected and developed with community input and informed by P5 and DOE decisions

22 3/21/23 Valishev I Fermilab Accelerator Complex Evolution

SRF Linac Configurations:

C2a) Basic: small increase in PIP-II current, demonstrated XFEL RF

C2b) High duty factor RF source: small increase in PIP-II current

C2c) Higher Current PIP-II: significant current upgrade (5mA)

One ACE Configuration

- I don't have numbers, but this might be our compressor ring feeding FFA.
- Will have to talk to the Lab

Example 1

Configuration C1b:

- 20Hz RCS + 2 GeV AR
- Main elements
 - 1-2GeV Linac
 - 20Hz 8GeV RCS
 - 2 GeV Accumulator Ring
 - MI Upgrades
 - Transfer Lines

3/21/23 Valishev I Fermilab Accelerator Complex Evolution

R. Bernstein, FNAL

23

28

- Leptoquarks, doubly charged Higgs, Heavy Majorana neutrinos,...
- New interactions break degeneracy
- Not unlike $K^o \bar{K}^o$ system
- Usually parameterize interaction strength as G/G_F

R. Bernstein, FNAL

29

Math

best paper on muonium-antimuonium theory:

G. Feinberg and S. Weinberg, Phys.Rev. 123, 1439 (1961).

R. Bernstein, FNAL

Relevant Equations

$$\frac{\delta}{2} = \frac{8 G_F}{\sqrt{2}n^2 \pi a_o^3} \left(\frac{G_{\rm Mu}\overline{\rm Mu}}{G_F}\right)$$

where n is the principal quantum number and a_o is the Bohr radius of the muonium atom. For n = 1,

$$\delta = 2.16 \times 10^{-12} \frac{G_{\text{Mu}\overline{\text{Mu}}}}{G_F} \text{ eV}$$

Assuming an initially pure $\mu^+ e^-$ state, the probability of transition is given by:

$$\mathcal{P}(t) = \sin^2\left(\frac{\delta t}{2\hbar}\right) \lambda_{\mu} e^{-\lambda_{\mu} t}$$

where λ_{μ} is the muon lifetime. Modulating the oscillation probability against the muon lifetime tells us the maximum probability of decay as anti-muonium occurs at $t_{\text{max}} = 2\tau_{\mu}$. The overall probability of transition is

$$P_{\text{total}} = 2.5 \times 10^{-3} \left(\frac{G_{\text{Mu}\overline{\text{Mu}}}}{G_F} \right)$$

R. Bernstein, FNAL

Beautiful Experimental Methods

- How do you make muonium?
 - make a sub-surface beam
 - sub-surface beams stop inside, not on surface, and have a lower momentum distribution than surface beams
 - this yields a smaller straggling by $\Delta R \sim p^{3.5}$ and a tighter spatial stopping distribution
 - let the positive muons stop in SiO₂ powder, a technique invented at TRIUMF
 - The powder structure stops the positive muon and the voids permit the muonium to escape

Experiment

R. Bernstein, FNAL

Signal and Background

 $G/G_F < 3. \times 10^{-3} @ 90 \% CL$

Willmann, L., et al. (1999), Phys. Rev. Lett. 82, 49.

- Signal:
 - μ⁻ decay (e⁻near Michel peak) in coincidence with e⁺
 - Backgrounds:
 - 1. The rare decay mode $\mu^+ \to e^+ e^+ e^- \nu_e \bar{\nu}_{\mu}$ with a branching ratio of 3.4×10^{-5} . If one of the positrons has low kinetic energy and the electron is detected, this channel can fake a signal.
 - 2. The system starts as muonium, hence $\mu^+ \to e^+ \nu_e \bar{\nu}_{\mu}$ yields a positron. If the e^+ undergoes Bhabha scattering, an energetic electron can be produced. Background results from the coincidence of that scattering with a scattered e^+ . The positron's time-of-flight is used to reject background.
 - $e^+e^- \rightarrow e^+e^-$, annihilation or scattering

R. Bernstein, FNAL

- Both backgrounds can be suppressed with a pulsed beam and by waiting for the muon lifetime to suppress the muon decay
 - can make up the muon flux at a hotter beam, which did not exist at the time of MACS
- Modern detectors have much better resolution
- discussions with experts: x100 should be achievable

R. Bernstein, FNAL

35

Future Muon Program

MU2e