Muon decays

Francesco Renga INFN Roma

Golden channels and new opportunities

- MEG-II (D. Palo)
- Conceptual studies and R&Ds toward future μ -> e γ searches (FR, W. Ootani)
- Mu3e and other programs with HiMB at PSI (A. Papa)
- Decays into exotic particle (D. Redigolo)

Current programs

MEG D. Palo

Kinematic		
Core σ	MEG I	MEG II Goal
E _v (%)	2.4	1.1
$u_{\gamma}(z_{\gamma})$ (mm)	5	2.6
$v_{\gamma}(R\varphi_{\gamma})$ (mm)	5	2.2
$\mathbf{w}_{\gamma}(R_{\gamma})$ (mm)	6	5
t _v (ps)	60	60

Kinematic		MEG II
Core σ	MEG I	Goal
$p_{e_+}(\text{keV})$	380	130
θ_{e+}/ϕ_{e+} (mrad)	9.4 / 8.7	5.3/3.7
t _{e+} (ps)	70	30
z _{e+} /y _{e+} (mm)	2.4/1.2	1.6/0.7
e+ Efficiency	30	70

Current programs

Mu3e A. Papa

- MuPix mass production: ongoing
- Complete integration run: 2023
- Engineering run: 2024
- First physics run: 2025

Muon decays to axions D. Redigolo

$$\mathcal{L}_{ ext{eff}}^{ ext{LFV}} \supset rac{\partial_{\mu}a}{2f_a}\,ar{\mu}\gamma^{\mu}(C_{\mu e}^V + C_{\mu e}^A\gamma_5)e + ext{h.c.}$$

Mu3e phase-II A. Papa

muonEDM A.Papa

p=125 MeV/c [muE1]

	$\pi \mathbf{E1}$	$\mu {f E1}$
Muon flux (μ^+/s)	4×10^6	1.2×10^{8}
Channel transmission	0.03	0.005
Injection efficiency	0.017	0.60
Muon storage rate (1/s)	2×10^3	360×10^{3}
Gamma factor γ	1.04	1.56
e^+ detection rate $(1/s)$	500	90×10^{3}
Detections per 200 days	8.64×10^{9}	1.5×10^{12}
Mean decay asymmetry A	0.3	0.3
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	$<3 \times 10^{-21}$	$< 6 \times 10^{-23}$

2-body decay of muons are stopped on a thin target

Positron and photon are monochromatic (52.8 MeV), back-to-back and produced at the same time;

Accidental Background

$$\Gamma_{acc} \propto \Gamma_{\mu}^{2} \cdot \varepsilon_{e} \cdot \varepsilon_{\gamma} \cdot \delta E_{e} \cdot (\delta E_{\gamma})^{2} \cdot (\delta \Theta_{e\gamma})^{2} \cdot \delta T_{e\gamma}$$

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %)
Extreme resolutions
+ eγ Vertex

Crystal	Nal	LYSO(Ce)	LaBr₃(Ce)	YAP(Ce)	Plastic scintillator	Silicon
Density [g/cm³]	3.7	7.4	5.1	5.4	1.0	2.3
Light yield (relative to Nal)	100%	75%	160%	70%	30%	-
Peak Emission [nm]	415	420	380	370	400	_
Decay time [ns]	230	40	16	27	2-4	-
Radiation length [cm]	2.6	1.1	1.9	2.7	43	9.4
Critical energy* [MeV]	13	12	12	23	93	39
Hygroscopicity	Yes	No	Yes	No	No	-

Take-home messages

- Within the next couple of decades we'll have a lot of muons and we'll have a lot of muon decay studies to do with them
- Effort needed to have the best detectors for this kind of physics
 - μ -> e γ detector concept to be redesigned, some ideas but nothing written in stone
 - merging multiple channels into the same detector concept would be beneficial under many points of view
- A lot of room for new ideas, new detector R&Ds, new collaborations