Tracker intrinsic resolution, electronics, readout

Richie Bonventre March 27, 2023

Mu2e setup

- Preamp at straw end, analog routed to central digitizer
- Comparator for applying threshold for time measurement
- 50 MHz digitizers
- 3x Microsemi PolarFire FPGAs w/ firmware TDC
- VTRx optical transciever

Mu2e measurements from each hit straw

- Drift time ${\sim}2.5~\mathrm{ns} \to \mathrm{transverse}$ radius ${\sim}150~\mu\mathrm{m}$
- Time division $\sim 400 \text{ ps} \rightarrow \text{longitudinal position} \sim 4 \text{ cm}$
- Time-over-threshold to 4 ns $\rightarrow t_0 \sim 7$ ns
- 50 MHz digitized waveform \rightarrow energy deposition $\sim 10\%$

- gaussian smearing × exponential encoding average spacing between ionizations
- Long tail when track near wire

Drift response in Mu2e

Drift Radius Residual (mm)

- gaussian smearing × exponential encoding average spacing between ionizations
 - Long tail when track near wire

$Drift \ \overline{response \ in \ Mu2e}$

- gaussian smearing × exponential encoding average spacing between ionizations
- Long tail when track near wire

Drift resolution

KLOE drift chamber (NIM A 461 (2001) 25-28)

Mu2e KinKal fit ambiguity assignment

- Primary ionization statistics
 - Tails difficulties for reconstruction
- Diffusion during drift + electronics noise, shaping, threshold vs gas gain
 - Time resolution
 - ullet × drift velocity for distance resolution

Longitudinal resolution

Mu2e VST plane resolution measurement

- Core from analog signal slope vs noise
- Tail from missing cluster on only one side
- Threshold optimization not necessarily the same as for drift (higher threshold → slower effective propagation speed)

Optimizations for Mu2e

- Trigger on ∼3rd cluster (15 clusters for 5mm path length)
 - >95\% efficient for MIP, stable noise rates <10 khz
- Preamp bandwidth $\sim 150 \text{ MHz}$
 - EFD protection diodes and termination resistance limit max bandwidth
- Handle up to $250~\mathrm{KHz/straw}$ on average, $2~\mathrm{MHz}$ maximum

"Nominal" Mu2e-II

- Mu2e reco is pretty robust
- trigger efficiency?

Possible changes

- Lower gas pressure
 - worse ionization statistics, worse diffusion, higher gain
- Increase HV, thinner wire: increase gain, lower threshold
 - Trigger on single cluster?
 - Electrostatic stability, space charge effects?
- Slower gas
 - Better drift resolution, futher separate clusters, worse pileup
- Higher bandwith
 - Better rise time, longitudinal resolution, more noise
 - Termination resistance, ESD capacitance?
 - Thermal noise from wire resistance and ESD?
- Better shaping, digitization for TOT
 - accurately measure end of pulse
 - improvement on t_0 helps with pileup
- Cathode readout additional measurement, 4x coincidence

Cluster counting?

G. Chiarello et al 2017 JINST 12 C07021, algorithm implemented on FPGA $\,$

- A lot more information for reconstruction
 - Repeated measurements for drift, better t_0 than TOT
 - Longitudinal tail from missing cluster
 - Better PID (gain fluctuations vs cluster count)
- Mu2e clusters <3 ns apart
- Faster digitization \rightarrow power consumption
- switched capacitor digitizers (DRS4) cheaper and low power, but $> \mu s$ deadtime

Radiation Tolerance

- Mu2e levels:
 - 500 KRad (12x safety factor)
 - $6e12 / cm^2 1mev eq NIEL (6x safety factor)$
 - $1e11 / cm^2 > 20 mev SEE (6x safety factor) 3e9 per year$
- Polarfire: 500 kRad, SEU negligible even at 10x, SEFI?
 - Stability, timing performance
- VTRx: 1 MRad
- ADC, DAC, DDR, DC-DC

ASIC?

- Lower power
- Radiation tolerance
- Faster (approaching timing limits on some parts of FPGA design)
- Routing of analog signals

Data rate and occupancy

- Mu2e: Average straw 100 KHz, hottest straw 400 KHz (+proton intensity fluctuations up to 6x that)
- Mu2e-II: 3-4x instantaneous? 1.6 MHz
- Relevant scales: 10 ns longitudinal propagation time, 50 ns drift time, 100 ns TDC deadtime
- On FPGA hit processing / filtering?
- VTRx+: $4 \text{ Gb/s} \rightarrow 10 \text{ Gb/s}$

Summary

- Mu2e-II will require new electronics design
 - Definitely for rates, maybe for radiation, possibly for performance?
- Changes to gas / HV impact resolution, tails
 - Garfield / SPICE simulations necessary
 - $\bullet~$ Some reco to see how pattern reco holds up