Optimizing the Tracker (and Related Elements) for Improved Mu2e-II Sensitivity

David Brown, LBNL

Mu2e Sensitivity (SU2020 Paper)

Channel	Mu2e Run I
SES	2.4×10^{-16}
Cosmic rays	$0.046 \pm 0.010 \text{ (stat)} \pm 0.009 \text{ (syst)}$
DIO	$0.038 \pm 0.002 \text{ (stat)} ^{+0.025}_{-0.015} \text{ (syst)}$
Antiprotons	$0.010 \pm 0.003 \text{ (stat) } \pm 0.010 \text{ (syst)}$
RPC in-time	$0.010 \pm 0.002 \text{ (stat)} ^{+0.001}_{-0.003} \text{ (syst)}$
RPC out-of-time ($\zeta = 10^{-10}$)	$(1.2 \pm 0.1 \text{ (stat)} ^{+0.1}_{-0.3} \text{ (syst)}) \times 10^{-3}$
RMC	$< 2.4 \times 10^{-3}$
Decays in flight	$< 2 \times 10^{-3}$
Beam electrons	$< 1 \times 10^{-3}$
Total	0.105 ± 0.032

- Decay In Orbit (DIO) and Cosmic Rays contribute ~equally to the background
- Sensitivity optimization requires N_{bkg} <<1

10X Improved Sensitivity Goal for Mu2e-II

- Requires 10X stopped muons (assuming N_{bkg}<<1)
 - Assume 3X from increased rate, 3X from increased duty factor
- The DIO background scales with the muon stops
 - Will increase by 10X
 - To keep N_{bkg}<<1 the DIO rejection must be improved by a factor of ~5
 - The track momentum resolution must be improved
- The cosmic ray background scales with livetime
 - Will increase by 3X
 - Cosmic rays will no longer be the dominant background
 - Some rejection improvement will be needed to keep N_{bkg}<<1 (X2?)
 - Tracker/tracking improvements could help
 - Improved momentum resolution ⇒ smaller selection window
 - Improved upstream track finding ⇒ better reflection background rejection
 - Other track⇔CRV correlations might also be helpful

Tracker Momentum Resolution

- The Mu2e DIO background comes roughly equally from (Gaussian) core and high-side momentum resolution tails
- The resolution core is dominated by material effects:
 - Energy loss in upstream passive material
 - Stopping Target and Proton Absorber (IPA)
 - Multiple scattering in the straw walls
 - → Improving the core resolution requires reducing or mitigating the effect of materials
- The high-side tails are caused by reconstruction effects:
 - LR ambiguity mis-assignment
 - Non-Gaussian time-to-distance response
 - → Reducing the high-side tails requires improving the reconstruction algorithms and/or the data they are fed
 - General tracking resolution improvements will also help

Material Impacts

Σ Upstream Material Momentum Change

Tracker Momentum Change

- Plots are from the detailed G4-based Mu2e simulation of Conversion electrons (Ce)
- Δ mom = MC true change in the Ce momentum getting to (going through) the tracker
 - The core peak width defines the momentum resolution
 - Negative tails cause efficiency loss
 - minor impact on sensitivity
 - The mean value is mostly irrelevant (can be calibrated out)
- The Upstream material impact is roughly equal to the tracker material impact
 - Naively, both must be reduced to improve the resolution

Upstream Material Impact

 Σ IPA Momentum Change

Σ Stopping Target Momentum Change

- The upstream material resolution is dominated by the stopping target
- The muon stopping rate is proportional to the target mass
 - We cannot improve the sensitivity by simply reducing the mass

IPA Material Impact

IPA Intersection Momentum Change

N IPA Intersections

- Conversion electrons cross the IPA 2 ± 0.5 times
 - Each intersection contributes a small amount to the resolution
- The net impact is small since the number of intersections is ~constant

Target Material Impact

Stopping Target Foil Momentum Change

N Foil Intersections

- Conversion electrons intersect 3.1 ± 1.8 target foils
 - Each foil intersection contributes a modest amount to the resolution
- The target resolution is dominated by the variation in the number of crossings
 - Variation in the crossing angle (material path) also contributes

Momentum Reconstruction Resolution

Momentum Resolution At Tracker Middle

- The core resolution (120 KeV/c) is less than expected (270 KeV/c)
 - The fit corrects for energy loss in each straw crossing
 - Using the predicted trajectory
 - This removes the (dominant) resolution contribution due to variation in the amount of material intersected
- The resolution tails can be greatly reduced by fit quality cuts
 - RMS after selection is ~2X core resolution

How to Improve the Sensitivity (Tracker)

- Mitigate the target energy loss impact
 - Predict the target material (number and paths of foil intersections) using the track fit
 - Optimize the target geometry for predicting the target energy loss
 - Investigate how to improve the # of μ-stops/gm
 - Can the muon beam be optimized?
 - Actively count the target intersections
 - NB: the target foil energy deposition is not intrinsically useful as Ece > critical energy
- Reduce the reconstruction artifacts causing high-side tails
 - Improve the hit information quality and quantity
 - Improve the drift calibration (T2D)
 - Improve the pattern recognition algorithm (LR ambiguity assignment)
 - Improve the track selection algorithms
- Reduce the tracker (straw) mass
 - Reduced mass will improve the fit quality and extrapolation accuracy
- Mitigate the IPA energy loss impact
 - Predict the material path using the track fit

Backup

Upstream Materials

Stopping Target (37 Al foils)

Proton Absorber (HDPE cylinder)

Other Tracker Requirements

- Must be buildable and operable
- Acceptable radiation damage to wires
 - Increase C/cm tolerance or reduce charge load
- Acceptable radiation damage to electronics
 - Increase rad hardness or reduce (photon) fluence
- Acceptable pileup
 - Increase TDAQ pileup tolerance or reduce pileup rate