Tracker intrinsic resolution, electronics, readout

Richie Bonventre March 28, 2023

AMF tracking environment

- What makes it to the tracker? Expected rates?
- Radiation tolerance / charge accumulation problems minimized?
- Annular detector?
- Time division requirements?

Time to go *track* to the drawing board!

Mu2e setup

- Preamp at straw end, analog routed to central digitizer
- Comparator for applying threshold for time measurement
- 50 MHz digitizers
- 3x Microsemi PolarFire FPGAs w/ firmware TDC
- VTRx optical transciever

Mu2e measurements from each hit straw

- Drift time $\sim 2.5 \text{ ns} \rightarrow \text{transverse radius} \sim 150 \ \mu\text{m}$
- Time division $\sim 400 \text{ ps} \rightarrow \text{longitudinal position} \sim 4 \text{ cm}$
- Time-over-threshold to 4 ns $\rightarrow t_0 \sim 7$ ns
- 50 MHz digitized waveform \rightarrow energy deposition $\sim 10\%$

- gaussian smearing × exponential encoding average spacing between ionizations
- Long tail when track near wire

$Drift \ \overline{response \ in \ Mu2e}$

Drift Radius Residual (mm)

- gaussian smearing × exponential encoding average spacing between ionizations
 - Long tail when track near wire

$Drift \ \overline{response \ in \ Mu2e}$

Drift Radius Residual (mm)

- gaussian smearing × exponential encoding average spacing between ionizations
- Long tail when track near wire

Drift resolution

KLOE drift chamber (NIM A 461 (2001) 25-28)

Mu2e KinKal fit ambiguity assignment

- Primary ionization statistics
 - Tails difficulties for reconstruction
- Diffusion during drift + electronics noise, shaping, threshold vs gas gain
 - Time resolution
 - ullet × drift velocity for distance resolution

Longitudinal resolution

Mu2e VST plane resolution measurement

- Core from analog signal slope vs noise
- Tail from missing cluster on only one side
- Threshold optimization not necessarily the same as for drift (higher threshold → slower effective propagation speed)

Optimizations for Mu2e

- Trigger on ∼3rd cluster (15 clusters for 5mm path length)
 - >95\% efficient for MIP, stable noise rates <10 khz
- Preamp bandwidth $\sim 150 \text{ MHz}$
 - EFD protection diodes and termination resistance limit max bandwidth
- Handle up to 250 KHz/straw on average, 2 MHz maximum

MEG-II

- 1 GHz bandwidth, 2GSPS
- charge and time division
- 150 mW per channel
- Drift cells 7-9mm square, 90:10 He isobutane, 13 primary ionizations per cm
- 110 μm resolution
- $600\mu s$ deadtime
- 15 Hz trigger ($<1~\mu s$ trigger latency)

Possible changes

- Lower gas pressure, lighter gas
 - worse ionization statistics, worse diffusion, higher gain
- Increase HV, thinner wire: increase gain, lower threshold
 - Trigger on single cluster?
 - Electrostatic stability, space charge effects?
- Slower gas
 - Better drift resolution, futher separate clusters, worse pileup
- Higher bandwith
 - Better rise time, longitudinal resolution, more noise
- Better shaping, digitization for TOT
 - accurately measure end of pulse
 - improvement on t_0 helps with pileup
- Cathode readout additional measurement, 4x coincidence
- Cluster counting

Cluster counting?

G. Chiarello et al 2017 JINST 12 C07021, algorithm implemented on FPGA

- A lot more information for reconstruction
- With He or lower gas pressure, best way to recover resolution?
 - Repeated measurements for drift, better t_0 than TOT
 - Longitudinal tail from missing cluster
 - Better PID (gain fluctuations vs cluster count)
- Mu2e clusters <3 ns apart
- Faster digitization \rightarrow power consumption
- switched capacitor digitizers (DRS4) cheaper and low power, but $> \mu s$ deadtime
 - Could we have a low enough rate fast trigger?