

MEG II Experiment: Search for $\mu^+ \rightarrow e^+ \gamma$

Dylan Palo

Overview

Goal:

 Describe the MEG II experimental technique and its data analysis

• Discuss:

- Charged Lepton Flavor Violation (CLFV)
- MEG II experimental overview
- MEG II data analysis

Charged Lepton Flavor Violation

µ→eγ Decay

- No instance of charged lepton flavor violation has been observed
- e.g. $\mu \rightarrow \text{e} \gamma$ decay: SM BR is **negligible** $\sim 10^{-54}$; $\propto [\frac{\Delta(m_{\mathcal{V}}^2)}{m_{\mathcal{W}}^2}]^2$
- μ→eγ observation would be clear sign of new physics
- Many SM extensions allow for other μ→eγ decays at significantly higher, detectable rates

Charged Lepton Violating Theoretical Models 🦂

Supersymmetry

Compositeness

Leptoquark

Heavy Neutrinos

Second Higgs Doublet

Heavy Z' Anomal. Z Coupling

Slide originally by Marciano

MEG II-Mu2e Comparison

- Model-independent effective Lagrangian with two types of theoretical models
- If (e.g. SUSY, κ <<1): BR($\mu \rightarrow e \gamma$) ~ BR($\mu N \rightarrow e N$)/ α
- If (e.g. leptoquarks, κ>>1):
 µN→eN at tree level and µ→eγ at loop level
- If MEG II sees a signal, likely indicates a signal for Mu2e in κ<<1 space
- Similar relationship between MEG II and Mu3e at PSI

https://doi.org/10.1016/j.ppnp.2013.03.006

Theoretical Impact

- The final MEG result cited in ~500 theory papers with >100 in 2022
- The results of MEG II and CLFV experiments in general are strongly motivated by current interest in the theory community

MEG II Experimental Overview

MEG II Experiment

- International collaboration of ~ 60 physicists
- Based at Paul Scherrer Institut located in Villigen, CH near Zurich
- Uses the PSI proton ring cyclotron
 - 590 MeV protons
 - Unbunched surface muon beam produced: Stop rate $\approx 7 \times 10^7$ Hz, 28 MeV muons

UTokyo KEK Kobe

INFN Genoa **INFN** Lecce **INFN Pavia INFN Pisa INFN Roma**

UC Irvine

BINP JINR

ETHZ

MEG II Goal

- The current µ→eγ decay sensitivity is 4.2x10⁻¹³ (90% Confidence Level), set by MEG I
- The MEG II collaboration aims to increase the sensitivity by an order of magnitude.

MEG II Experiment: Signal/Background

- The $\mu \to e \gamma$ signal is a two-body decay at rest, signal e/ γ have equal and opposite momentum $(m_{\mu}/2)$
- Background does not have these characteristics:
 - RMD (radiative muon decay) : $\mu^+ \rightarrow \gamma e^+ v_\mu \overline{v_e}$ (small E $v_\mu \overline{v_e}$)
 - Accidental background: high p_{e_+} coincident with γ from RMD, AIF $(e^+ e^- \rightarrow \gamma \gamma)$, etc.
- The experiment requires precise kinematic measurements of the decay products to distinguish between signal/background decays

MEG II Experiment: Apparatus

- Stopped μ^+ decay in target; decay products (e, γ) are measured in various detectors
- Similar design to MEG I, but all detectors have been upgraded
- Kinematic estimates at target by propagating e^+ to the target, then projecting γ to e^+ target vertex $(\Delta\theta_{e^+\gamma}, \Delta\varphi_{e^+\gamma}, \Delta t_{e^+\gamma}, \Delta E_{\gamma}, \Delta p_{e^+})$

Radiative decay counter (RDC)

(CDCH)

CDCH Detector

Upgrades:

- New ultra-light stereo open-cell drift chamber to improve efficiency and resolution
- More track space points in drift chamber to improve resolution (1150 readout drift cells)
- In 2021, the chamber was filled with He: C₄H₁₀: C₃H₈O: O₂ (88.2:9.8:1.5:0.5)

Kinematic Core σ	MEG I	MEG II Goal
$p_{e_+}(\text{keV})$	380	130
θ_{e+}/ϕ_{e+} (mrad)	9.4 / 8.7*	5.3/3.7*
t _{e+} (ps)	70	30
z _{e+} /y _{e+} (mm)	2.4/1.2	1.6/0.7
e+ Efficiency	30	70

*φ_{e+} estimated at plane perpendicular to track

Time-Distance Isochrones[ns]

Wire Positions at

pTC Detector

- Upgrade: new design with higher hit multiplicity
- Two semi-cylindrical modules, each consisting of 256 timing counters
- Counter consists of a scintillation tile with double-sided SiPM readout
- Individual counter timing precision ~90 ps
- Signal $e_+ < N_{TC} > \sim 9$; $\sigma_{t_e^+} = 30 \text{ ps}$

Kinematic Core σ	MEG I	MEG II Goal
$p_{e_+}(\text{keV})$	380	130
θ_{e+}/ϕ_{e+} (mrad)	9.4 / 8.7	5.3/3.7
t _{e+} (ps)	70	30
$z_{e+} / y_{e+} $ (mm)	2.4/1.2	1.6/0.7
e+ Efficiency	30	70

LXe Detector

- One of world's largest liquid Xe detector
- Upgrade: inner face is now covered by 4092 MPPCs (Multi-Pixel Photon Counters)
- Other 5 sides covered by PMTs

Kinematic		
Core σ	MEG I	MEG II Goal
E _v (%)	2.4	1.1
$u_{\gamma}(z_{\gamma})$ (mm)	5	2.6
$v_{\gamma}(R\varphi_{\gamma})$ (mm)	5	2.2
$W_{\gamma}(R_{\gamma})$ (mm)	6	5
t _v (ps)	60	60

RDC Detector

- RDC eliminates RMD some accidental events using LXe/RDC time-matched γ/e^+
- Remove events based on:
 - γ/e^+ relative timing (scintillator)
 - e^+ energy (RMD~low p_{e^+}) (LYSO)
- MC predicts MEG II sensitivity improvement of ~15%

Target Analysis

- Target position error was of the main sources of uncertainty in MEG I
- Target 0.5 mm normal error
 - \rightarrow 5 mrad φ_e error
- Monitor the target motion using a photographic camera analysis
- 'Hole Analysis': image holes in target by lack of positrons originating from the hole position

MEG Electronics+Trigger

- All detectors use custom WaveDREAM (Waveform Domino REAdout Module) electronics boards
- O(10k) channels contain 1024 'sample-and-hold' cells that sample and temporarily store detector signal (1.4 GHz)
- MEG Trigger Conditions:
 - LXe E_{γ} > $E_{\text{Threshold}}$ (40-45 MeV)
 - Time Match: pTC/LXe | $T_{e+/\gamma}$ | < 12.5 ns
 - Spatial Match: pTC/LXe based on μ→eγ decays simulated in Geant4
- Trigger rate of ~ 10 Hz at $4 \times 10^7 \mu/s$

Ritt: https://doi.org/10.1016/j.nima.2003.11.059

2021+2022 Datasets

- 2021 dataset consisted of ~24M MEG triggers at varying beam rates (2,3,4,5 · 10⁷µ/s)
- 2022 accumulated more stops than any MEG run to date!

2021+2022 Data Analysis

- Optimizing resolutions/efficiency is critical to achieve the optimal sensitivity and ultimately detect μ→eγ
- Data analysis:
 - Positron analysis:
 CDCH+SPX waveform data → e⁺ kinematics
 - Photon Analysis:
 MPPC+PMT waveform data → γ kinematics
 - Target analysis: tracking target position, orientation, shape
 - RDC analysis: matching low momentum e^+ with LXe γ
 - Physics analysis: optimizing data selection, kinematic resolution estimates, kinematic correlation, etc.
- Will highlight some kinematic resolution measurements in next few slides

Positron Resolution

- e.g. data-driven e^+ kinematic resolution estimate compares two independently measured/fit turns on a single e^+ track
- Compare kinematics at a common plane between the turns

Double Turn Analysis

- Preliminary double turn (DT) resolution estimates are all improved with respect to MEG I
- Improving single hit resolution, magnetic field map, etc. aim to achieve the MEG II goal resolutions
- ***Goal resolutions are based on signal e_+ ; double turn resolutions are corrected by MC $\sigma_{signal}/\sigma_{michel}$ ratio due to momentum difference

			3• 10 ⁷ µ/s	
Kinematic	MEG I	MEG II	MEG II 2021	MEG II 2021
Resolution	Core σ	Goal	Preliminary	Preliminary
		Core σ	DT Core σ	DT Single σ
$p_{e_+}(\text{keV})$	380	130**	94	105
$\theta_{e+}/\phi_{e+}^*(mrad)$	9.4/8.7	5.3/3.7	7.4/5.3	8.1/5.9
z _{e+} /y _{e+} (mm)	2.4/1.2	1.6/0.7	1.9/0.7	2.1/0.8

*φ_{e+} estimated at plane perpendicular to track
 **based on early CDCH track fitting algorithms

2021 RMD Timing Peak

- Use true non-accidental RMD e^+/γ pairs at standard beam intensity to estimate $\sigma_{t_{e^+\gamma}}$
- Direct measurement of $\sigma_{t_e^+\nu}$
- For events with 9 N_{TC} (< $N_{TC}>$ for signal): $\sigma_{t_e+_{\gamma}}$ ~83 ps
- Comparable to MEG II goal

RMD $t_{e_+\gamma}$ with TC per-event Errors

Preliminary Sensitivity Estimates

- Maximum likelihood analysis
- MEG II 2021 dataset expected to approach the sensitivity limit set by MEG I
- MEG II 2021+2022 expected to surpass MEG I by a factor of ~4
- *Sensitivity here hasn't yet been updated to reflect updated resolutions
- **Single event sensitivity is the branching fraction that would result in 1 signal event in the dataset

Dataset	Sensitivity (10 ⁻¹³) 90% CL	Single Event Sensitivity (10 ⁻¹³)
MEG I Sensitivity	5.3	0.58
MEG II Preliminary 2021 Sensitivity Estimate	5.3-6.1	3.85
MEG II Preliminary 2021+ 2022 Sensitivity Estimate	1.2-1.4	0.81

Summary of Current Status

- In 2021, the experiment had its first physics run, achieving resolutions comparable to the MEG II design (e.g. $\sigma_{p_e^+}, \sigma_{t_e^+\gamma}, \sigma_{Z,Y_e^+}$). Finalizing algorithms for the 2021 physics analysis (CDCH alignment, LXe calibration, tuning likelihood PDFs, etc.)
- Now the 2021+2022 dataset is expected to achieve the most stringent limit on the CLFV μ→eγ decay.
- Plan to publish 2021 results in June and 2021+2022 at the end of 2023

Summary of Future Work

- Data analysis upgrades:
 - Optimize the magnetic field calculation/measurements (improve resolutions)
 - Alternate LXe energy calculations ($\sigma_{E_{\nu}} \sim 1.8\%$ with goal of 1.1%)
 - Alternate CDCH track finders (higher efficiency)
- Beam intensity optimization for 2023+. Dependencies:
 - LXe MPPC quantum efficiency degradation (annual annealing post-run)
 - Out-of-time 'pileup' in CDCH and LXe
 - Resolution/efficiency
- Hardware:
 - Drift chamber with additional layer designed with new material to avoid high current issues for 2024+
 - Work on upstream RDC counter
- DAQ:
 - Comparable DAQ weeks in 2023, plan to share beamtime with Mu3e in 2024+ until shutdown

Backup Slides

Thanks!

CDCH Waveform Analysis: Noise Suppression

- Observed low frequency noise on the CDCH waveforms coherent over entire electronics chips
- Developed algorithms to suppress noise by averaging the voltage bin-by-bin/chip away from signals
- Noise suppression is critical to improving hit efficiency and improving track space-point measurements

CDCH Waveform Analysis: Track Measurements

- Primary CDCH measurement is the track's distance of closest approach (DOCA) to a wire's center
- Waveform analysis results in estimated hit time.
 Combine with track T0 (from pTC), yields a drift time
- Requires time-distance relationship to estimate the hit DOCA. Conventionally calculated by Garfield
- Replaced by convolutional neural network (CNN) approach offers a data-driven approach by training on tracks in MEG data
- Improves DOCA resolution, reduces DOCA bias produced by ionization statistics, and improves kinematic resolutions

Wire Alignment

- Align the wires by calculating residuals as a function of position along the wire axis
- Iteratively correct the wire by applying translations, rotations, and a wire sagitta (electrostatic)
- Improves kinematic resolutions and biases in the kinematic resolutions

Axial Coordinate [cm]

Target Analysis: Hole Analysis

- 6 holes in the target foil
- Calculating hole's 3D coordinate using e^+ vertex distribution
- Yields absolute CDCH/target position
- Parallel coordinates estimated using vertex slice (no effect on kinematics)
- Normal coordinate estimated by calculating apparent hole coordinate vs. φ_{e^+}

Track Selection

- Track selection is implemented to achieve an appropriate positron sample
- Poorly measured tracks contribute a small amount to the maximum likelihood and require significantly more complicated PDFs.
- Identify function that eliminates mismeasured tracks while preserving quality tracks
- Data-driven example:
 - p_{e^+} > 52.8 MeV is unphysical. p_{e^+} > 53.5 MeV is mismeasured by >5 σ
 - Compare measurables in p_{e^+} > 53.5 MeV/ p_{e^+} < 53.5 MeV regions
 - e.g., Mismeasured tracks have large χ^2/N_{CDCH} and small N_{CDCH}
 - Apply machine learning to perform binary categorization using measurables (e.g., covariance, χ^2 , N_{CDCH})
 - ullet Dense neural network achieves improved categorization with respect to box cuts. Removes bad tracks over all p_{e^+}

Double Turn Analysis

- Turn kinematic comparison at target plane
- $\sigma_{\Delta A}^2 = \sigma_{Turn\ 2}^2 + \sigma_{Turn\ 1}^2$
- $<P_2$ - $P_1>\sim$ -100 keV, still under investigation... suspect magnetic field systematics

pTC Time Resolution

- pTC $\sigma_{t_e^+}$ estimated by comparing time of even/odd ordered hits in the same "cluster" of SPX hits
- Fit for $\sigma_{t_{e^+}}(N_{TC}) = \frac{112}{\sqrt{N_{TC}}}$
- Signal $e^+ < N_{TC} > ~9$

XEC Resolutions

CEX Reaction:

- $\pi^- p \rightarrow \pi^0 n; \pi^0 \rightarrow \gamma \gamma$
- $E_{\gamma} = 0.5 m_{\pi_0} \gamma (1 \pm \beta \cos \theta_{rest})$
- $\theta_{rest} = 0$; $\beta \sim 0.2$; $E_{\gamma} = 55/83 \text{ MeV}$
- Separate detector (BGO) selects back-to-back γ pair $(dt_{BGO-LXe}, E_{BGO}, Opening angle > 170 deg)$
- CEX reaction used to
 - Calibrate E_{γ} , t_{γ}
 - Estimate $\sigma_{E_{\gamma}}$, $\sigma_{t_{\gamma}}$
- Ongoing work to calibrate LXe to achieve MEG II goal resolutions (E_v)

LXe CEX Setup

LXe CEX Energy Distribution with Varying Depth (w)

			MEG II
Kinematic		MEG II	Preliminary
Resolution	MEG I	Goal	2021
E _v (%)	2.4	1.1	1.8
t _v (ps)	60	60	70

Backup: XEC QE

- Anneal MPPCs every year in order to recover MPPC quantum efficiency
- Quantum efficiency and therefore the signal/noise degrades with beam exposure
- Anneal using Joule method: i.e. high current

Degradation speed ~0.08%/hour

Backup: Wire Alignment

- Motivation: observed systematic mean residuals perpendicular to the wire axis. Causes biases observed in kinematic resolution checks
- Graphic shows how tracks can align the anode wires.
- Dotted vs. solid lines represent the true/incorrect drift cell
- Hit vector is aligned based on the track doca
- In all cases,
 hit X track X >=0
- Clear that information is maximal (minimal) if track is perpendicular (parallel) to the alignment error

Backup: Sensitivity

 Sensitivity is the average upper-limit based on many pseudo-experiments run with a null hypothesis

