# Conceptual Design and R&D Activities

# for a Future $\mu \rightarrow e \gamma$ Search

W. Ootani, ICEPP, Univ. of Tokyo

Workshop on a Future Muon Program at Fermilab, Mar. 29th, 2023

#### Contents

- Introduction
- Conversion Pair Spectrometer
- •All Silicon  $\mu \to e \gamma$  Detector
- Gaseous Detector
- Photon Calorimeter
- Summary



### Contents

- Introduction
- Conversion Pair Spectrometer
- •All Silicon  $\mu \to e \gamma$  Detector
- Gaseous Detector
- Photon Calorimeter
- Summary

# How to Reach $\mathcal{O}(10^{-15})$ Sensitivity?

- Quite difficult based on MEG concept
- Need a totally different approach



# Study Group for Future $\mu \to e \gamma$ Search Experiment

- •Set up to follow-up the discussions in HIMB Physics Case Workshop (April 2021) and the write-up (https://doi.org/10.48550/arXiv.2111.05788) and to devise solider experimental concepts for future  $\mu \to e\gamma$  search
- Open discussions on designs and technologies for future experiment. Not limited to a specific design
- Photon
  - Conversion spectrometer
    - Scintillator + gaseous tracker (W. Ootani, F. Renga)
    - Silicon (A. Schöning)
  - Calorimeter (A. Papa)
- Positron
  - Gaseous detector (F. Renga)
  - •Silicon (A. Schöning)

### Contents

- Introduction
- Conversion Pair Spectrometer
- •All Silicon  $\mu \to e \gamma$  Detector
- Gaseous Detector
- Photon Calorimeter
- Summary

## Calorimeter vs. Pair Spectrometer

#### Calorimeter



- High efficiency
- Cons

Pros

- Moderate detector resolutions  $(E, \vec{x}, t)$
- Moderate rate capability

### Pair spectrometer



- Pros
  - High energy resolution
  - High position resolution
  - Photon direction can be measured
  - High rate capability
- Cons
  - Low efficiency
  - Energy loss in converter



Pair spectrometer would be a viable option for photon detector at future  $\mu \to e\gamma$  experiment with higher beam rate

- Energy loss of conversion pair in converter
  - ⇒ **Active converter** to measure energy loss

Energy of conversion pair after converter (MC)



- Low efficiency
  - ⇒ Multi-layer
  - ⇒ Heavy active material

# **Experimental Design under Consideration**

- Experimental design based on pair spectrometer
  - Photon spectrometer with active converter  $\rightarrow$  higher resolutions (energy, timing, position), angle measurement
  - Positron spectrometer based on Si detector (a la Mu3e)  $\rightarrow$  high rate capability, concurrent search for  $\mu \rightarrow$  eee
  - •Separate active targets → higher vertex resolution, further BG suppression
  - •Significantly improved acceptance especially for zenith-angle  $\rightarrow$  angular distribution measurement after discovery



# **Enhanced Acceptance**

### Zenith-angle acceptance significantly improved w.r.t. MEG II

- $\rightarrow$  After  $\mu \rightarrow e \gamma$  discovery, angular distribution can be measured with polarised muon beam (  $P_{\mu} = -~0.86$  @MEG)
- → Pin-down underlying new physics
- •e.g. SU(5) SUSY-GUT:  $A_{\rm L} \neq 0, A_{\rm R} = 0$
- $\bullet$ e.g. SO(10) SUSY-GUT:  $A_{
  m L} \simeq A_{
  m R}$
- •e.g. Non-unified SUSY with  $\nu_{\mathrm{R}}:A_{\mathrm{L}}=0,A_{\mathrm{R}}\neq0$



$$\frac{dB(\mu^+ \to e^+ \gamma)}{d\cos\theta_e} \propto |A_R|^2 (1 - P_\mu \cos\theta_e) + |A_L|^2 (1 + P_\mu \cos\theta_e)$$



# Pair Spectrometer with Active Converter

#### Reminder

#### **Tracking layer**

- Measure momentum of conversion pair
- Possible technologies
- Drift chamber (a la MEG II CDCH)
- Radial-TPC
- Silicon detector

#### **Active conversion layer**

- Thin active material to measure energy loss of conversion pair
- Possible technologies
- Scintillator + photo-detector
- Silicon detector



#### Timing layer

- Measure timing of returning conversion pair
- in front of active converter
- Possible technologies
- Multi-layer RPC (mRPC)
- Active converter = timing detector

### Scintillator

#### Scintillator as active converter material

- Light yield → energy resolution
- Decay time → high rate capability
- Radiation length → detection efficiency
- Critical energy → effect of bremsstrahlung (difficult to measure)
- Cost

#### Photo-sensor for scintillation readout

- Requirements: high light detection eff. + low mass
- Photo-detector under consideration
  - GasPM
  - SiPM

| Crystal                          | Nal  | LYSO(Ce) | LaBr₃(Ce) | YAP(Ce) | Plastic<br>scintillator | Silicon |
|----------------------------------|------|----------|-----------|---------|-------------------------|---------|
| Density<br>[g/cm³]               | 3.7  | 7.4      | 5.1       | 5.4     | 1.0                     | 2.3     |
| Light yield<br>(relative to Nal) | 100% | 75%      | 160%      | 70%     | 30%                     | _       |
| Peak Emission<br>[nm]            | 415  | 420      | 380       | 370     | 400                     | _       |
| Decay time<br>[ns]               | 230  | 40       | 16        | 27      | 2-4                     | _       |
| Radiation<br>length [cm]         | 2.6  | 1.1      | 1.9       | 2.7     | 43                      | 9.4     |
| Critical energy*<br>[MeV]        | 13   | 12       | 12        | 23      | 93                      | 39      |
| Hygroscopicity                   | Yes  | No       | Yes       | No      | No                      | -       |

\* Critical Energy Ec: Ionisation ≤ Brems if E ≥ Ec

### **Simulation Study**

- Started simulation study with simple setup
- Estimate total energy which can be measured with converter + tracker
  - Efficiency is estimated with event fraction for

$$E > (52.8 \,\mathrm{MeV} - 2 \times m_e) - \delta E$$

(Target energy resolution:  $2\delta E = 0.2 \,\mathrm{MeV}$ )

Resolution for conversion pair tracker is not taken into account









blue : electron (conversion)
red : positron (conversion)
magenta : electron (ionization)
brown : electron (photo-absorption)
green : photon

### **Simulation Study**

#### Efficiency

- Efficiency saturates with increasing thickness due to energy escape by increasing bremsstrahlung and loss of conversion pair
- Heavy scintillator has a higher detection efficiency despite lower critical energy ← Some of bremsstrahlung can be absorbed in converter
- 10% with 4 layers of LYSO(3mm-thick)

#### Issues

- Multiple scattering ⇒ worsening position/direction resolution
- Segmentation required to mitigate pileup





(N.B. Effect of pileup hit of returning conversion pair is not taken into account)

### **Simulation Study**

#### Segmentation

- Segmentation to mitigate pileup by returning conversion pair
- Optimisation of segmentation is in progress. Observed slight worsening of efficiency.







Segment size:  $12.5 \times 25 \times 4 \text{ mm}^3$ 



1 layer: efficiency = 2.7% 5 layer: efficiency = 10% 10 layer: efficiency = 15%

### **Energy Resolution**

- Expected photoelectron statistics for LYSO + SiPM
  - Mean energy deposit for MIP (3mm-thick LYSO): 3.36MeV  $\rightarrow$  6.72MeV for conversion immediately after incidence
  - Light yield:  $4 \times 10^4$  photons/MeV
  - •2200 p.e. measured with  $30 \times 30 \times 4 \text{ mm}^3$  and  $2 \times \text{SiPM}$  (S13360-2050VE,  $2 \times 2 \text{ mm}^2$ ,  $50 \, \mu \text{m}$ )  $\Rightarrow \sigma_E \sim 140 \, \text{keV}$  (p.e. statistics)
  - Photoelectron statistics should be enough
- Other potential contributions to energy resolution
  - Position dependence of photoelectron yield  $\rightarrow$  not very large (a few %). In any case, can be corrected with measured conversion position
  - dE/dx dependence of scintillation light yield → not very large

# Timing Layer

### **Technology Options**

- Target resolution: 40ps for MIP ( $\rightarrow$  30ps for conversion pair)
- Technology options
  - Converter = Timing layer
  - mRPC as timing layer
- LYSO converter as timing layer
  - •CMS MIP Timing Detector HL-LHC: 30ps with LYSO bar  $(3 \times 3 \times 50 \text{ mm}^3)$
- multi-layer RPC (mRPC)
  - DLC-RPC technology developed for MEG II US-RDC
  - •Single p.e time resolution of 110ps achieved for single layer RPC 194µm (not optimised for timing)
  - Optimisation for timing under study
    - Thinner gap
    - Higher efficiency and timing resolution with multi-layer



#### Multi-layer DLC-RPC (MEG II)



## LYSO Beam Test

- Beam test @KEK PF-AR beam line, Nov. 16-21, 2022
  - Electron beam 0.5-5GeV
- Two types of LYSO
  - Standard LYSO, Fast LYSO (FTRL)
  - $3 \times 5 \times 50 \,\mathrm{mm}^3$  wrapped with ESR
  - •SiPM: S14160-3015PS (3 × 3 mm<sup>2</sup>, 15  $\mu$ m), S14160-3050HS (3 × 3 mm<sup>2</sup>, 50  $\mu$ m)
  - Waveform digitizer: DRS4 (1.6 GSPS)













### Analysis

- Time pickup @ leading edge
- Time-walk correction by TOT
- Time resolution is estimated in two methods

• 
$$\sigma(t_{\text{side a}} - t_{\text{side b}})/2$$

•
$$\sigma((t_{\text{side b}} + t_{\text{side b}})/2 - t_{\text{timing ref. counter}})$$

•Good timing resolution of  $40 - 50 \, \mathrm{ps}$  for fast LYSO



### Contents

- Introduction
- Conversion Pair Spectrometer
- •All Silicon  $\mu \to e \gamma$  Detector
- Gaseous Detector
- Photon Calorimeter
- Summary





# All Silicon $\mu \rightarrow e \gamma$ Detector

$$rac{N_{acc}}{N_{sig}} \stackrel{ ext{def}}{=} B_{acc} \propto R_{\mu} \left[ \sigma(p_e) \left[ \sigma(E_{\gamma})^2 \right] \left[ \sigma(\Theta_{e\gamma})^2 \right] \right]$$

TIME RESOLUTION IS HERE IGNORED

- Positron Tracker (incl. Vertex Detector)
  - high <u>rate</u> tolerance (+++)
  - good vertex resolution (+++)
- Converted Photon Tracker
  - high spatial resolution (+++)
  - good directional resolution (+++)
  - low efficiency (---)
- Active Muon Stopping Target
  - > precise decay vertex (+++)
  - technologically challenging (---)



- $\rightarrow$  high resolution allows for high muon-stopping rates (R<sub>u</sub>)
- high single event sensitivity (SES)

A. Schöning, Heidelberg

4

HiMB Workshop, 7.April 2021

# All Silicon $\mu \to e \gamma$ Detector

#### **Active Converter**

#### Idea: Active Converter

- critical energy is  $E_{crit} \sim 35 \text{ MeV}$  in silicon
- average e<sup>+</sup>/e<sup>-</sup> energy is 25 MeV
- ionisation loss dominates → can be measured



- Could also be used for precise timing → <100ps?</li>
- Caveat: only small radiation length possible
  - → to be simulated



A. Schöning, Heidelberg

HiMB Workshop, 7.April 2021

# All Silicon $\mu \rightarrow e \gamma$ Detector

### **Active Target**



for 50 µm Si-layer  $\rightarrow \Theta_{MS} = 6$  mrad

Idea:

measure vertex position more precisely

vertex position uncertainty from extrapolation:

**~120 µm** (6 mrad x 20 mm)



best achievable spatial resolution in stopping target:

~12 µm

resulting photon direction resolution:

 $\rightarrow$   $\Theta(\gamma) \sim 0 \text{ mrad}$ 

electron direction resolution given by multiple scattering in stopping target:

 $\rightarrow$   $\Theta(e)$  ~3 mrad (for 30 µm silicon thickness)

Conclusion: only 30  $\mu m$  thin stopping target makes sense, since gain would be marginal otherwise!

### Contents

- Introduction
- Conversion Pair Spectrometer
- •All Silicon  $\mu \to e \gamma$  Detector
- Gaseous Detector
- Photon Calorimeter
- Summary

# Gaseous Positron Trackers toward $10^9$ - $10^{10} \,\mu/s$

- Some improvement in the resolution could come from the cluster counting technique (not a huge factor), then we are at the ultimate performances for drift chambers
- Future R&D should aim to:
  - preserve such good resolutions
  - keep the same (or reduce the) material budget
  - operate at extremely high rates

## **Drift Chamber**

- The rate per wire can be reduced with an alternative arrangement of the wires
- Transverse wires (in the xy plane):
  - inspired to the geometry of the Mu2e tracker
  - more, shorter wires -> lower rate per wire
- Same rate per wire as MEG II with ≥ 10 times larger muon rate

# The main challenge is the material budget

- very light wire supports
- no electronics in the tracking volume
  - —> long transmission lines





# Radial Time Projection Chamber

- Unconventional radial geometry to mitigate effects related to long drifts (diffusion, space charge)
  - radial extension O(10 cm):



Need to develop a radial TPC with cylindrical MPGD readout, ~ 2 m long and ~ 30 cm radius

Need to find a very light gas mixture to operate it with reasonably low diffusion

Need to develop advanced algorithms for correcting field deformations

# Radial Time Projection Chamber

### **Feasibility Study**

- Simulation at 10<sup>9</sup> μ/s
- One should consider ~ 250k readout channels
  - challenging **FE integration** and **cooling** in the outer surface of the cylinder with a reasonable material budget (~ few % X<sub>0</sub>)

Time spread of electrons arriving to the same pad







Assuming 5 x 3 mm<sup>2</sup> pads

## **Gaseous Conversion Pair Tracker**

Low rate —> much less demanding w.r.t. positron trackers



## **Gaseous Conversion Pair Tracker**

### **Feasibility Study**

e+e- reconstruction in a radial TPC with strip readout

**WORK IN PROGRESS** 



Resolutions are evaluated in two coordinates (w1, w2) in a virtual plane orthogonal to the track, with w2 almost parallel to z







### Contents

- Introduction
- Conversion Pair Spectrometer
- •All Silicon  $\mu \to e \gamma$  Detector
- Gaseous Detector
- Photon Calorimeter
- Summary

## **Calorimeter for Photon Detector**

• Based on the current technology development the calorimetry is still an option for beam rate not higher than 5 108 mu/s



|   | Comparison with other scintillators via the figure of merite F.o.M. = $$ | $\rho$ . | LY     | \ |
|---|--------------------------------------------------------------------------|----------|--------|---|
| • | Comparison with other scintillators via the figure of merite F.o.M. = $$ | / (      |        |   |
|   | V                                                                        | \        | $\tau$ | / |

| Scintillator | Density $\rho$ [g/cm <sup>3</sup> ] | Light Yield LY [ph/keV] | Decay time $\tau$ [ns] | F.o.M. √ (ρ x LY / τ) |
|--------------|-------------------------------------|-------------------------|------------------------|-----------------------|
| LaBr3(:Ce)   | 5.08                                | 63                      | 16                     | 4.55                  |
| LYSO         | 7.1                                 | 27                      | 41                     | 2.17                  |
| YAP          | 5.35                                | 22                      | 26                     | 2.13                  |
| LXe          | 2.89                                | 40                      | 45                     | 1.61                  |
| Nal(TI)      | 3.67                                | 38                      | 250                    | 0.75                  |
| BGO          | 7.13                                | 9                       | 300                    | 0.46                  |

## **Calorimeter for Photon Detector**

- Goal: Detect photons with energy O(50) MeV with ultra-precise time resolution and supreme energy resolution at the Intensity Frontiers
- LYSO or LaBr(Ce) big crystals
- Photosensor: MPPC/SiPM for a front and back readout
- Use granularity for geometrical reconstruction
- MC simulations based on GEANT4 and including the photosensors and the electronics. Reconstruction algorithm based on waveform analysis



### Energy Resolution at O (50 MeV)



Photons detected per SiPM on the inner surface of an ultimate big crystal



## Summary

- •R&D efforts for future  $\mu \to e\gamma$  search with  $\mathcal{O}(10^{-15})$  sensitivity with higher intensity muon beam
  - Open discussions on designs and technology options for future experiment
- Different R&D activities ongoing
  - Pair spectrometer with active converter
  - •All silicon  $\mu \rightarrow e \gamma$  detector
  - Gaseous detector
  - Calorimeter with high performance scintillator
- Further studies with more detailed simulations and prototypes will come.
- We would greatly appreciate your participation in our effort!