Mu2e Target

Michael Hedges Purdue University 03/28/2023

Charged Lepton Flavor Violation

Charged leptons are only fermions without observation of flavor violation

- Quarks mix (CKM)
- Neutrinos oscillate

CLFV is required in ν SM, but ludicrously suppressed

$$\xrightarrow{\mu} \xrightarrow{\nu_{\mu}} \xrightarrow{\nu_{e}} \xrightarrow{\nu_{e}} \xrightarrow{e}$$

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} |\sum_{k=2,3} U_{\mu k}^* U_{ek} (\frac{\Delta m_{1k}^2}{M_W^2})^2|^2 < 10^{-54}$$

Any experimental observation would unambiguously indicate New Physics

CLFV: $\mu \rightarrow e$ conversion

- Monoenergetic ~105 MeV/c conversion-electron (CE)
- Sensitive to Λ -scales $\mathcal{O}(10^3)$ TeV

Challenge 1: μ^- beam from FNAL protons

High-level proton beam parameters

Linac: 400 MeV

Booster: 8 GeV

Recycler rebunches

Slow-extraction in Delivery Ring

Beam to Mu2e

FNAL neutrino needs drive the 8 GeV proton beam

Resonant extraction in Delivery Ring

Take-home: Inject instability, "scrape" off small piece of spill every revolution

Mu2e target will see:

- $\bullet~\sim 4\,\times\,10^7$ protons @ 8 GeV
- ullet ~ 1 mm gaussian beam radius
- 250 ns pulses
- 1.7 μs pulse period
- At 2.5 MHz

Challenge 2: Ideal Mu2e conditions

Mu2e needs:

- High yield of *stoppable* muons \Rightarrow low momentum μ^- beam
- Minimal beam-induced backgrounds (i.e. radiative pion capture)
- Low radiation environment

Mu2e

Discovery potential of
$$R_{\mu e} = \frac{\Gamma(\mu^- + N(Z,A) \to e^- + N(Z,A))}{\Gamma(\mu^- + N(Z,A) \to \nu_{\mu} + N(Z^- 1,A))} > 2 \times 10^{-16} (5\sigma)$$

- $R_{\mu e} < 8 \times 10^{-17} \ (90\% \ CL)$
- $\mathcal{O}(10^4)$ improvement of previous result (SINDRUM-II)

Production Solenoid (PS)

Compact, high-Z pion-production target in high B-field with backwards extraction

Production Target

LaO₂-doped Tungsten, core EDMed from single rod

Longitudinally segmented cylinder

 $\Rightarrow \textbf{stress management}$

Longitudinal fins

 \Rightarrow thermal and structural management

1mm tungsten spokes

 \sim 700 W power absorbtion $\Rightarrow \sim$ 1500 K

Radiatively cooled

Expect target lifetime of \sim 1 year: \Rightarrow replace during summer shutdowns

Simulation driven design

Production Target

Possible failure modes

Temperature

- W melts at 3500 K, but can undergo creep (softening) at lower temps
- Want to keep deformation from creep less than 0.5 mm

Oxidation

- Driven by residual O₂ and water
- Expect sufficient vacuum at 10⁻⁵ torr

Recrystallization & Radiation damage

 Not major failure modes, but we do want to avoid large material changes affecting muon production

Simulations suggest suitable performance

Possible failure modes

Temperature

- W melts at 3500 K, but can undergo creep (softening) at lower temps
- Want to keep deformation from creep less than 0.5 mm

Oxidation

- Driven by residual O₂ and water
- Expect "sufficient" vacuum at 10⁻⁵ torr

Recrystallization & Radiation damage

• Not major failure modes, but we do want to avoid large material changes affecting muon production

Simulations suggest suitable performance

• But how do we know...?

Target testing

Without testing, we are flying blind

Idea: place target at Fermilab "AP0"

- 8 GeV protons
- Skeleton test plan somewhat outlined already, needs work in implementation
 - Expose target to beam, steady-state temp, take measurements, validate sims

Complications:

- No resonant extraction (more severe thermal shock than Mu2e)
- Spot sizes (beam sigma) slightly different
- Facility available, but still needs plenty of work before starting

No showstoppers, but need to start soon

Future work and remaining questions

Mu2e "Hayman" production target is in-hand

• Mu2e Run 1 scheduled for \sim 2026 (\leq 1 year long, \sim 0.5x beam intensity)

First-of-its-kind target: fully simulation-driven optimization and stress analysis

- ullet Designed with nominal beam intensity @1 year: \Rightarrow Run 1 should not be a concern
- Target failure and replacement outside of shutdown window would hurt experiment

Can we get testing facility setup at APO after g-2 finishes?

 Test whether expected performance degradations (e.g. thermal stresses, oxidation, creep) within tolerances

(mostly quoting work from others)

Backup

Target comparisons

Tungsten thermal stresses

- Melting, Tungsten melting temperature ~ 3500 K
- But, long before it melts, it softens and low mechanical stresses result in plastic deformations.
 - think of a stick of butter on a warm summer day.
 - Usually called Creep which is a function of Temperature, Stress, and Time. Strain, ε, Described by Norton Creep Law:
 - Stress to the 0.9 power • Time to the 0.3 power $\varepsilon = B \exp\left(-\frac{Q}{RT}\right) \sigma^n t^m$
 - Constant B = 0.4, Q = 122 kJ/mol for 1% La₂O₃ doped W.
 - Conclude: Support target to minimize mechanical stress.
- Thermal Stresses.
 - Parts that heat up are constrained by those that heat up less, resulting in thermal stresses.

Tungsten oxidation

Oxidation driven by residual Oxygen and Water Vapor in the vacuum.

- Depends on the concentrations of O2 and H2O and on the temperature.
 Negligible if the temperature is sufficiently low.
- · Oxygen Cycle:

· Water Catalyst:

Tungsten oxidation

Before (top) and after (bottom) of oxidation tests at RAL with vacuum leak

Vacuum lowers O_2 and H_{2O} , minimizing effect

Expect 10⁻⁵ torr vacuum Vacuum limited by conductance of high vacuum line

Beam-target alignment

AP0 test

Existing Target and Shielding Module Removed.

Test target and
Module inserted in
place of target used
for g-2

Instrumentation and vacuum utilities connected to top of module.

