Mu2e-II Tracker R&D Topics: Personal Picks and Wild Ideas

David Brown, LBNL

Tracker Requirements for Mu2e-II

- Must improve the momentum resolution
- Must be physically buildable
 - Optimize design for constructibility
- Acceptable radiation damage to wires
 - Increase C/cm tolerance
 - Reduce charge load
- Acceptable radiation damage to electronics
 - Increase rad hardness
 - Reduce (photon) fluence
- Acceptable pileup
 - Increase pileup tolerance
 - Reduce pileup rate
 - Improve pattern recognition algorithms

Momentum Resolution Improvement

- Improved drift information
 - lower threshold
 - single-cluster readout
- 3-layer panels
 - 'Guarantees' hit 'doublets' in each panel
- Reduced straw mass
 - Thinner mylar
 - Reduced metalization
- Improved reconstruction algorithms
 - Will be (mostly) done for Mu2e

Constructibility Optimization

- Simplify and improve robustness of straw/wire termination
 - Self-centering helical inserts (ATLAS TRT)
 - Crimp termination
- Simplify panel construction
 - Increase inter-straw spacing
 - Add a 3rd layer to recover coverage
 - Allow gaps for mechanical pressure constraint (every ~16 straws)
 - 1-piece IPR (full arc)
 - 'Layered' IPR?
- Improve PIR-straw gas seal
 - Flange on straw insert to create another sealing surface

Increase wire C/cm tolerance

- Alternate gas mixture (?)
- Wire cleaning (alcohol)
- Wire material and surface improvements

Reduce wire charge

- Reduce wire cell size
 - Limited by electrostatic instability
- Reduce gas gain
 - Limited by electronics gain/noise
- Reduce pileup fluence
 - Reduce Compton electron fluence
 - lower mass straw walls
 - Reduce photon production
 - Reduce beam flash electrons
 - Optimize target mass, geometry, and material to minimize bremsstrahlung
 - Reduce proton fluence
 - Increased IPA mass or improved geometry

Increase Electronics Radiation Tolerance

- Small feature ASICs for digitization
- Improved FPGA rad hardness (?)
- Other components (optical link)?

Reduce Photon Fluence on Electronics

- Increase electronics shielding
 - Takes away active volume
- Reduce bremsstrahlung
 - Reduce beam flash electrons
 - Optimize target mass, geometry, and material to minimize bremsstrahlung
- NB: photons from muon capture are irreducible (tied to # of muon stops)

Increase Pileup Tolerance

- Reduced cell (straw) size
- Digitization ASIC
- Hardware (FPGA) background hit filtering