Workshop on a Future Muon Program At Fermilab

Mu2e-II TDAQ developments

G. Pezzullo, A. Gioiosa Yale University, Univ. del Molise/INFN

Introduction

- Requirements for the Mu2e-II DAQ?
- Mu2e-II will have more beam on target and higher granularity detectors.
- Assumptions:
 - Power and cooling limitations are solved by money
 - Installation around 2030
 - Control and Synchronization of the detector will work itself out, this talk focuses on Trigger and Data Paths
- This talk outlines the ideas that were proposed and

Implications

- ~2x more detector channels, and ~5x more pulses on target, for ~10x higher data rate (if background remains the same)
 - Current expected Mu2e-I data rate from front-ends is 40 GBps
- More detector channels and more background implies bigger event sizes (maybe $\sim 3x$?)
 - Mu2e-I expected event size is 200KB
- Tape capacity for Mu2e-I is 7PB/year
 - Might assume 2x increase for Mu2e-II to I4PB/year
- Necessary rejection for Mu2e-II is ~3000: I
 - 600 KB events @ 3 MHz -> 560 MB

Implications

- Reduced OFF Spill periods (to no OFF Spill time?) implies less advantage for large frontend buffers streaming data:
 - In Mu2e-I, have second of downtime to play catchup
 - In Mu2e-II, steady event rate (could buffer just to handle event to event variation, not large accelerator time structures)
- No large front-end buffers at CRV would imply need for low-latency trigger decision for CRV.
 - Low latency trigger decision implies an FPGA trigger layer.
- Consider the cost of these scenarios:
 - Large CRV buffers and software trigger
 - Small CRV buffers and hardware trigger

Streaming vs Triggered

- Important upfront decision as to which detector subsystems are triggered.
- Same as Mu2e-I?
 - Stream all Tracker and Calorimeter data
 - Software Trigger for CRV based on Tracker and Calorimeter
- Alternatives:
 - Stream Calorimeter Data
 - Hardware Trigger for Tracker and CRV based on Calorimeter
 - High-level Software Trigger for storage decision

5

Radiation Tolerance requirements

- Radiation levels at the detector will be higher than Mu2e-I
 - Mu2e-II comparable to Calorimeter level of CMS phase-II?
- For Mu2e-I, using the VTRx was a primary constraint
 - We had to change the DAQ topology as a result

 Mu2e-II likely will not want to design their own rad-hard links, so we will be at the mercy of CMS/ATLAS

6

• This should be worked out as soon as possible

Generic Data Readout Topology

Multi-stage TDAQ system

concentrator

Storage decision

Generic Data Readout Topology

Data Concentrator:

 Aggregate small front-end fragments into larger chunks for efficient event building

Event Builder:

- Data is switched from Concentrator Layer to Event Builder Layer such that full events arrive at Event Builder Layer and are buffered.
 - Preprocessing or filtering could occur

Storage Decision:

 Available decision nodes make high level storage decision on full events retrieved from Event Builder Layer buffer

Generic Data Readout Topology applied to Mu2e-I

• The Mu2e case

concentrator

G. Pezzullo (Yale University)

Event builder

Storage decision

Generic Data Readout Topology

- Data transfer can be minimized by:
 - transferring only triggerprimitives
 - pulling all the data only for triggered events

Front-ends

Generic Data Readout Topology applied to Mu2e-I

• In Mu2e, we use this approach already in the second stage of the event-filtering (after the trigger decision is made already) for pulling the CRV data

Front-ends

- A 2-level TDAQ system based on FPGA pre-processing and trigger primitives
 - ROCs (create trigger primitives, buffer event fragments), LI FPGA layer (getting trigger primitives from calo and tracker), and HLT layer (requests event fragments from full detector)
- A 2-level TDAQ system based on FPGA pre-filtering
 - Leverage HLS for FPGA rejection
- TDAQ based on GPU co-processor
 - Using GPUs at HLT (or L0)
- A trigger-less TDAQ system based on software trigger
 - Scale up current system

- Serious implications in the TDAQ-farm room requirements (not enough cooling if we would use the current Mu2e TDAQ room)
- Data transfer and processing become very challenging

- A trigger-less TDAQ system based on software trigger
 - Scale up current system

- Data transfer is not trivial
- Importing C-style algorithm is not simple

- TDAQ based on GPU co-processor
 - Using GPUs at HLT (or L0)

- A 2-level TDAQ system based on FPGA pre-processing and trigger primitives
 - ROCs (create trigger primitives, buffer event fragments), LI FPGA layer (getting trigger primitives from calo and tracker), and HLT layer (requests event fragments from full detector)
- A 2-level TDAQ system based on FPGA pre-filtering
 - Leverage HLS for FPGA rejection
- FPGA can offer flexibility for algorithm development
- Mu2e is already using FPGAs in the ROCs and the DTCs
- These solutions are more tight to the sub-detector readout systems

FPGA scaling

FPGA scaling

Mu2e DTC	KINTEX.	KINTEX. UltraSCALE	VIRTEX.	VIRTEX. UltraSCALE
Logic Cells (LC)	478	1,161	1,995	4,407
Block RAM (BRAM) (Mbits)	34	76	68	132
DSP-48	1,920	5,520	3,600	2,880
Peak DSP Performance (GMACs)	2,845	8,180	5,335	4,268
Transceiver Count	32	64	96	104
Peak Transceiver Line Rate (Gb/s)	12.5	16.3	28.05	30.5
Peak Transceiver Bandwidth (Gb/s)	800	2,086	2,784	5,886
PCI Express Blocks	1	6	4	6
Memory Interface Performance (Mb/s	s) 1,866	2,400	1,866	2,400
I/O Pins	500	832	1,200	1,456

FPGA algorithm development: HLS

- High Level Synthesis is now good enough to rival manual VHDL or Verilog algorithm development
- Allows physicists to easily understand and develop low and fixed latency FPGA algorithms
 - Makes emulation easy for offline
- Debug and verify in a software environment (often 10x faster iterations than firmware simulation tools)
- CMS is heavily investing in HLS approach to FPGA algorithm development.
 - There is a hls4ml collaboration developing machine learning (neural network) tools using HLS

Coding in HLS


```
//sum up presamples
                                                             C-style language
        pedsum type pedsum = 0;
        for (int i = 0; i < NUM PRESAMPLES; i++){</pre>
51
            pedsum += adc[i];
53
        //find average
54
        adc type pedestal = pedsum / NUM PRESAMPLES;
        adc type peak = 0;
56
57
        for (int i = START SAMPLES; i < NUM SAMPLES; i++){</pre>
58
            if (adc[i] > peak){
59
                peak = adc[i];
60
            else{
                break;
64
66
        adc type energy = peak - pedestal;
        adc_type energy_max_adjusted = ((((energy_max_LSHIFT8 * gain_RSHIFT15) >> 9) *
                                             inverse_ionization_energy_LSHIFT26) >> 10);
68
        adc type energy min adjusted = ((((energy min LSHIFT8 * gain RSHIFT15) >> 9) *
69
                                             inverse ionization energy LSHIFT26) >> 10);
        if (energy > energy_max_adjusted || energy < energy_min_adjusted){</pre>
            failed energy = 1;//failed
73
        return ((failed energy<<1) | failed time);</pre>
74
```


Why multi-staged TDAQ?

- From Mu2e studies, we know that >70% of the hits produced in the tracking detector is made by very low-P (<10 MeV/c) e
 - Identifying them is possible
 - If we can identify these hits, we can suppress them and reduce the data throughput by quite a lot
 - ML tools are available on FPGA!
- In principle, the Helix patter-recognition can be coded on FPGA
- One could use very powerful FPGAs if we locate them outside of the detector solenoid

Proposed R&D strategy

- The majority of the people involved with the group is quite busy developing the Mu2e TDAQ system
 - We need to create additional "expertise" on algorithm development on FPGA
- Use the current Mu2e trigger algorithms to perform feasibility studies
 - Development can happen with commercial boards
- A successful demonstration will consist of delivering a demonstrator that can be plugged-in parasitically in the Mu2e TDAQ towards the end of the Run-2