.S. DEPARTMENT OF Oﬂ:lce Of

#Fermilab | ' NERGY Science

Parallelization in LArSosft reconstruction -
SciDAC4 developments

Giuseppe Cerati (FNAL)
LArSoft Multi-threading and Acceleration Workshop
Mar 2, 2023

Project Goals

* “HEP event reconstruction with cutting edge computing architectures”
project supported by the DOE SciDAC-4 program

- https://computing.fnal.gov/hepreco-scidac4/; https://www.scidac.gov/
* Collaboration between physicists at Fermilab and computer scientists at UOregon
* Mission: accelerate HEP event reconstruction using modern parallel architectures

* Focus on two areas:
- Novel parallel algorithm for charged particle tracking in CMS
- Pioneer similar techniques for reconstruction in LArTPC detectors

* Goals of the project are the following:
1. Identify key algorithms for the outcome of the experiments that dominate reconstruction time
2. Re-design the algorithms to make efficient usage of data- and instruction-level parallelism
3. Deploy the new code in the experiments’ framework
4. Explore execution on different architectures and platforms

2% Fermilab
2 2023/03/02

https://computing.fnal.gov/hepreco-scidac4/
https://www.scidac.gov/

Uu vy V wire plane waveforms

Reconstruction for LArTPC v experiments

» Charged particles produced in neutrino interactions ionize the i \ 7
argon, ionization electrons drift in electric field towards anode cavo S
planes

* Sense wires detect the incoming charge, producing beautiful & 7
detector data images i

* Reconstruction in LArTPC experiments is challenging due to 7l —,

unknown interaction point, many possible topologies, noise,
contamination of cosmic rays

- Takes O(minutes)/event in MicroBooNE

- ICARUS ~5x bigger, DUNE Far Detector O(100)x bigger

* LArTPC detectors are modular in nature = parallelism!

uu

Track
| ' Reco
Raw | Signal Hit . a |
— > al — — : : Particle | : Event
Data - | Shaping Reco Clustering : Calorimetry — d Building
| Shower |7 | \Y | P
Reco | : _ }IB(m\AJ<Z

e °
nnn

...

3 2023/03/02 Typical reconstruction chain for LArTPC experiments

nnn

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

 Parallelization of Hit Finder Algorithm

2% Fermilab
4 2023/03/02

[[| [| [| [|
I n I t I a I St u d y - H I t F I n d I n g Optimizing the hit finding algorithm for liquid argon TPC neutrino detectors using parallel architectures
[|

Sophie Berkman (Fermilab), Giuseppe Cerati (Fermilab), Kyle Knoepfel (Fermilab), Marc Mengel (Fermilab), Allison Reinsvold
Hall (Fermilab) et al. (Jul 1, 2021)

Published in: JINST 17 (2022) 01, PO1026 - e-Print: 2107.00812 [physics.ins-det]

* MicroBooNE: ~8k wires readout at 2 MHz, deconvolved wire signals
are Gaussian pulses

* Hit finding: identify pulses and determine their peak position and width

* It ean used to take a significant fraction of the reconstruction workflow
- few percent to few tens of percent depending on the experiment

* Wires (and ROIs) can be independently processed:
- algorithm suitable to demonstrate speedup potential by parallelizing LArTPC reconstruction

0'40
< 30
=20

10

|

IIII\IIIIIIIII‘IIIILLLLI}

2500 2600 2700 2800 2900 3000 __ 2eFermilab
5 2023/03/02 t [ticks]

Standalone Implementation

* Replicated LArSoft hit finder as standalone code for testing and optimization

* Replaced Gaussian fit based on Minuit+ROOT with a local implementation of
Levenberg-Marquardt minimization

- gradient descent when far from minimum and Hessian minimization when close to it
* implementation based on “Data Reduction and Error Analysis for the Physical Sciences”

- Include boundaries on fit parameters for better fit stability

 Early tests showed that standalone implementation is ~8x faster than default
- before optimizations and without any vectorization or multi-threading

2% Fermilab
6 2023/03/02

Roofline analysis

Vectorization Results s O
» Profiling the code (e.g. roofline) shows that most e s
of the time is still spent in the minimization < L Q veurisa
algorithm o
- number of iterations needed to converge is variable: i o 80 © vt ©_ 5o Spets e 7330+ T 2
difficult to vectorize across multiple hit candidates. Standalone Hit Finder

w
T

* We choose to vectorize specific loops within the
algorithm, typically across data bins

- main limitations: only a subset of the code is vectorized,
number of bins iIs same order as vector unit size

BskL PBKNL

N
N %))
T T

-
(&)
1

—
I

» About 2x speedups, both on Skylake Gold (SKL)
and KNL when compiling with icc+AVX-512

Speedup Relative To No Vectorization

O
4

32 bit 128 bit 256 bit 512 bit 512 bit
w/o pragma w/ pragma w/pragma w/pragma w/o pragma

7 2023/03/02 sample: v+cosmics Vectorization performance

Multi-threading Results

* In standalone version, implemented using OpenMP with dynamic scheduling
* Best performance achieved with two-level nested parallelization

- parallel for over events

- regions of interest on wires: parallel region with omp for+critical (output synchronization)

Thread Scaling on Skylake Gold

* Results show near ideal £ Skl
scaling at low thread counts ™}
25

- speedup increases up to :
30x (95x) for 80 (240) threads =
on Skylake Gold (KNL) 150

—e— N, Wire=1
—e— N, Event=1
51 N,,Event=10

T B
100

120

8 2023/03/02 N, Event x N, Wire

Thread Scaling on KNL

o
- |
T
g100- KN L .
Q|
)
80—
60—
40—
i —e— N, Wire=1
i —e— N, Event=1 Samp|e:
20— —e— N, Event=5
i N, Event=10 '
- o NjEvenizo V+COSMICS
| | | | I | .| I | | | | |
50

100

150 200 250
N, Event x N, Wire

Validation of Algorithm Output

* Physics output validated against original algorithm
- one to one comparison of hit parameters shows little difference

» Algorithm is fully efficient across all planes both in
MicroBooNE and ICARUS
- detectors with large differences in signal-to-noise ratio

- waveforms with low S/N i
need fit parameters limits

—

o
i
|

-
)
I I 1T TTTH I T 1T I 1T 1T I 1T T

98% of hit time
within 0.02 of
original result

—

o
=
|

Number of Events
=

-
e
¢

Ll Ll | | L1 1 | L1 1 1 | L1 1 | | L1 1 | | Ll Ll | | L1 1 | L1 1 1 '+. Hit EffiCiency -

-0.02 -0.015 0.01 0005 0 0.005 001 0.015 0.02
Default Hit Time - Marquardt Hit Time (Ticks)

2% Fermilab
9 2023/03/02

LArSoft Integration

» Minimization algorithm integrated and used as a plugin in LArSoft

- currently compiled with gcc by default

- testing the Levenberg-Marquardt hit finder in MicroBooNE and ICARUS reconstruction
shows speedups of 12x and 7x respectively (single thread)

» Multi-threading enabled in LArSoft within the hit finder module

- implementation of wire+ROI level parallelization with TBB
- rely on art for event-level multi-threading

* First vectorized and multi-threaded algorithm for LArTPC!

2= Fermilab

10 2023/03/02

» Multi-threading of “1D” MC ICARUS signal processing sequence

2= Fermilab
11 2023/03/02

Context: multithreading for production jobs

» art and larsoft provide multithreading capabilities through TBB library
- art multithreading can process concurrently data across events or within the same event

 Grid allocations have total available memory split by CPU cores
 Grid jobs often need slots with large memory, thus getting multiple cores
* Production jobs are however running single-threaded, thus use only one core

* We can achieve significant processing speedups if we are able to exploit
multithreading and increase our core utilization efficiency

- multithreading within the event doesn’t need to load more event data, can exploit unused
cores given the same memory allocation

- target for production jobs is to have efficient multithreading at moderate thread counts

2= Fermilab
12 2023/03/02

Services and Multithreading

* Art does not allow to run multithreaded if services are not thread safe and
consequently marked as “SHARED”
- see this talk by Kyle for detalls

 Currently in ICARUS stageO_run2_icarus_mc.fcl the following services are
loaded, and only the first two are LEGACY (not SHARED)

- SIOVChannelStatusService, SIOVDetPedestalService, DetectorClocksServiceStandard,
DetectorPropertiesServiceStandard, SignalShapinglCARUSService,
lcarusGeometryHelper, ICARUSChannelMap, LArPropertiesServiceStandard

* Scisoft team has been working on larsoft services with the goal of making
them thread safe. Work is however taking significant time as changes are

non-trivial and require to be propagated to downstream experiment code

2% Fermilab
13 2023/03/02

https://indico.fnal.gov/event/23808/contributions/74064/attachments/46283/55621/larsoft-coordination-2020-03-24.pdf

However...

* Scisoft team is targeting thread safety both across and within events

» Since we only care about the latter, the situation is significantly simpler:
- SIOVChannelStatusService and SIOVDetPedestalService access information from a DB

- Thread safety within events only requires that the DB access is done at event boundaries
or anyways only once per event

- This can be enforced and we can make the service SHARED

* using the “EnsureOnlyOneSchedule” functionality (link to class)
* adding an std::mutex in the DBUpdate function

* Development merged in larevt in Nov. 2022

2t Fermilab

14 2023/03/02

https://github.com/LArSoft/larcore/blob/develop/larcore/CoreUtils/EnsureOnlyOneSchedule.h

Multithreading implementation in modules

» Significant work on multiple fronts in the past years, time to harvest it
- hit finder, icarus signal processing (thanks to Tracy Usher!), Wire Cell

* |lcarus stageO_run2_icarus_mc.fcl basically has the following steps
multithreaded with TBB already:
- MCDecoderl CARUSTPCwROI, Decon1DROI, ROIFinder, GausHitFinder
- Although with some updates to Decoder and ROIFinder: PR to icaruscode is open

* Next | show results from this setup:
- latest icaruscode release+PR, running stageO_run2_icarus_mc.fcl
* tested without (default) and with jemalloc library for memory allocations

- not meant to be a “final/optimized” version, goal is to demonstrate functionality
* motivate usage of multi-threading for both 1D and 2D deconvolution processing

2= Fermilab
15 2023/03/02

https://jemalloc.net/

Scaling reSUH:S Out of the box, not necessarily optimized/tuned.

 Tested on icarusbuild02, without other ongoing jobs
- nhot a production environment

» Can achieve up to 4x speedup for the 4 modules that are multithreaded

* Full stageO processing speedup limited by other time consuming modules
- but some of them may be low hanging fruits for speedups

* Memory increase is overall small, as expected

SignalProcess Peak resident

g
o

| —— default I —— default
jemalloc e ~ 120 jemalloc

W
wn

w
o
'

CPU time
speedup

115 - memaory usage
110 - Increase

ease wrt default N

£ 105 -

Speedup relative to default N=1
N
v

— v (]
o v o
\\
Mem

100 -

2= Fermilab
16 2023/03/02

Scaling Of individual mOdU|eS Out of the box, not necessarily optimized/tuned.

MCDecoderlICARUSTPCwWROI Deconl1DROI

5.0 -
- default ()

45 4 — jemalloc

| = default
- jemalloc

1
1

= =2 54
- B
= =
o o
= o 4 -
8 8
by @
= =
o = 3-
w w
Q. Q.
= =
° T 2 -
Db w
Qv @
Q. Q. —
(¥a) (¥a)
1 -
2 4 6 8 10 12 14 16 2 4 6 8 1 12 14 16
N threads N threads
ROIFinder GausHIitFinder
250 - - default //' 10 A — default
- - jemalloc — — - jemalloc
2 225 - z g
- -
o o
% 2.00 A -
o o
8 o 6 -
v 175 1 y
= =
g 150 A ﬁ 4 -
Q. Q.
3 125 - =
Qv Db
Qv Qv
o o 2 -
Vi 100 - wn
0-75 L I L] L] L L L] L] L] L] L L L L] L] L
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
N threads N threads

2= Fermilab

17 2023/03/02

* Running at HPC

2= Fermilab
18 2023/03/02

LArTPC Reconstruction on HPC

* Work is ongoing to develop a reconstruction workflow for HPC centers.
- Initial targets are ICARUS 1D signal processing and Theta@ALCF

» Goal is an efficient utilization of HPC resources
- parallel architectures (SIMD and many-cores, also GPUs)
- high bandwidth interconnects between nodes

» Workflow developed in collaboration with HEP-on-HPC SciDAC project
- https://computing.fnal.gov/hep-on-hpc/
- J. Kowalkowski, S. Sehrish, M. Paterno, S. Ali (FNAL), T. Peterka, O. Yildiz (ANL)
a¢ Fermilab

19 2023/03/02

https://computing.fnal.gov/hep-on-hpc/

Spack builds

Spack
* LArSoft/art migrating away from home-brewed UPS-based tools for release builds
- See e.g. talks at https://indico.fnal.gov/event/51092/, https://indico.fnal.gov/event/51726/

* Targeting modern HPC-friendly tools such as Spack (see spack.readthedocs.io)

* Spack provides a simple way to customize compilation at package level
- icc and AVX-512 are needed for optimal vectorization speedups in hit finder

* A new package, larvecutils, was created containing vectorized code
- right now only MargFitAlg, but more can be added in the future

* Migration work still ongoing, but building icaruscode releases with Spack is possible!
- still requires manual work to produce a recipe, currently using icaruscode v09_37_01_02p04

- recent releases after cetbuildtools migration, so it may not be difficult to propagate recipe
- thank you to FNAL Spack team: P. Gartung, C. Green, M. Mengel, S. White

2= Fermilab
20 2023/03/02

https://indico.fnal.gov/event/51092/
https://indico.fnal.gov/event/51726/
http://spack.readthedocs.io

HEPNOS

« HEPNnOS is a distributed data service for managing HEP data.

distributed: available to all nodes on a machine, through memory (not reading files)

- data service: independent of user applications; works with domain concepts (datasets, runs) not artifacts (files)

 Features:

Accelerates access by retaining data in the system (in memory) throughout analysis process.
Uses SciDAC Institute technologies to get optimal use of interconnects at ASCR facilities

Provides for large scale, run-time configurable, parallelism
* global view of data, removes limitations from filesystem

Supports workflow load balancing across a large machine

* For this workflow what we did is:
- We built a consistent software stack: both ICARUS code and HEPnOS using same compiler and flags

21

Implemented the ability to store and load the required data types in HEPnOS

Developed HEPNOS art input source and output module
* |O capabilities limited to selected data products, not full metadata

2023/03/02

2= Fermilab

Workflow layout

signal
generator

in rank 0, make
the two queues:

“rawraw” and
llh itS”

For each event,
push a EID produce
into the “rawraw”
queue.

This is likely going
to be integrated
directly into the
loader.

pop EID from “rawraw”

get event EID

/

-~

push EID to “hits”

HEPNnOS

pop EID from “hits”
get event EID

e

Y

art process

" ™\ ROOT file

follows

Workflow task /

J

J

products are put into HEPnOS at
each of SH and P.

* Running signal processing (S), hit finding (H), and cluster3D+Pandora (P) reconstruction
- S in multi-threaded, H is vectorized and multi-threaded, P is serial

* MPIl-wrapper allows to execute an art/LArSoft instance in each rank, running S, H then P
* HEPNnOS servers communicate with art/LArSoft via MPI

- Each server supports as many ranks as allowed by memory available on node

* Ongoing tests on Theta with different ranks per node and different threads per rank. Stay tuned!

22 2023/03/02

2t Fermilab

Conclusions

* Developed first vectorized and multi-threaded algorithm in LArSoft: hit finder

» Extended usage of multi-threading to other modules of 1D ICARUS signal
processing

* Tests show that usage of jemalloc is critical for good thread scaling

» Ongoing work to prototype a LArSoft-based workflow for efficient usage of
HPC resources - ongoing tests on Theta

2= Fermilab
23 2023/03/02

