
Soon Yung Jun, Makoto Asai (JLab), John Apostolakis (CERN)
LArSoft Multithreading and Acceleration Workshop

March 2. 2023

Geant4 Multithreading and Tasking

• Motivations and benefits of Geant4 multithreading
– Take advantages of multi/many-core CPU architectures (FLOPS/Watt)
– Maximize event throughput with resource (memory) sharing on a chip
– Event-level parallelism is the natural choice as HEP events are

independent and each event can be simulated separately
• Geant4 tasking extension to support

– Sub-event level parallelism for better load balancing (Concurrency)
– Task-level parallelism for efficient uses of resources (Heterogeneity)

• Introduction of Geant4 multithreading (2013) and tasking (2021)
– POSIX pthread à Parallel tasking library (PTL, based on C++ thread)
– Also support TBB (Intel® Thread Building Block) backend

Geant4 Multithreading and Tasking

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 2

v11.0 G4Tasking

2021

v10.0 Geant4 MT

2013

CERN RD44

1994 1998

v0.0 Geant4

2023

Geant4 has been evolving continuously for more than two decades!

• Process one event at a time per CPU process
Geant4 Serial (Sequential) Mode

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 3

int main()
{

// Create the run manager

// Set mandatory classes
DetectorConstruction
PhysicsList
ActionInitialization

// Initialize the run manager

//UI: BeamOn
RunManageràBeamOn(N)

}
DoEventLoop(N) à GenerateEvent(i) à ProcessOneEvent(i)

G4RunManager G4RunManagerKernel

G4Run

G4UserRunAction

G4SteppingManger

G4TrackingManger

G4EventManagerG4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

G4VUserDetectorConstruction

G4VUserPhysicsList

G4VUserActionInitialization

DefineWorldVolume

InitializePhysics

G4VPrimaryGenerator

Geant4 Kernel

• Design principles
– Minimize changes in user-codes (maintain API changes at minimum)
– Minimize mutex/lock (avoid deadlock and data race)
– Build a simplified master/worker model

• The master thread is responsible for initialization of global shared data
(e.g., geometry and physics data) and configures worker threads, but does
not process any event

• Worker threads initialize thread local data and do actual work for the event
processing (i.e., start the event loop and process events)

Geant4 Multithreading Mode

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 4

Process

Master

Shared
Data

Initialize

Create

I/O

Worker tls Event Loop hits

Worker tls Event Loop hits

Worker tls Event Loop hits

Worker tls Event Loop hits

Join

Use

Threads

Sensitive detector hits

• Embarrassingly parallel application without any dependence and
communication between parallel tasks

• Beneficial when forking N-processes of a Geant4 application
requires more memory than resources provided by the system

• A key consideration for multi-threading is a substantial amount of
the memory shared by threads/tasks
– data generated at initialization (geometry/material, EM processes)
– data read in by multiple (hadronic) processes (lazy initialization)

• Data initialization is currently sequential – the full potential for
sharing data is achieved after multiple events have been simulated

Geant4 Event-level Multithreading

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 5

Shared

NThreads < (Total memory -) / NProcesses < (Total memory) /(+)

Memory/application (sharable) +=
Available
Memory
Processes

Available
Memory
Threads

<

(local)

• Memory reduction (Rf) by the fraction of shared memory (f) and the
number of cores/threads (N): 𝑅𝑓 = (1 − 𝑓) + 𝑓/𝑁

• Scalability on Intel® Xeon Phi (KNL, speed up by the number of threads)

Geant4 Multithreading Performance

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 6

Rf

Sp
ee

du
p

Number of threads

HyperthreadingPhysical
cores

Geant4 v11.1

Geant4 v10.3

f ∼ 0.75

CMS+FTFP_BERT

• Process n-eventModulo per thread (requested by the master)
Geant4 Multithreading Kernels

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 7

G4RunManagerKernel

G4MTRunManager

master

G4Run G4PrimaryGenerator

G4WorkerRunManager G4WorkerRunManagerKernel

worker-N

G4MTRunManagerKernel DefineWorldVolume

DoEventLoop ProcessOneEvent

G4Run G4PrimaryGenerator

GenerateAnEvent
worker DoEventLoop ProcessOneEvent

G4Run G4PrimaryGenerator

GenerateAnEvent

G4WorkerRunManage
r

G4WorkerRunManagerKern
el

G4EventManager

G4Run G4PrimaryGenerator

G4WorkerRunManager G4WorkerRunManagerKernel

worker-1
worker-2

worker-i

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

creates

G4VUserActions

[G4UserRunAction]

InitializePhysics

use

G4RunManager

G4MTRunManagerKernel::StartThread

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 8

G4Threading::WorkerThreadLeavesPool()

1. Create the worker run manager

G4Threading::WorkerThreadJoinsPool()

2. Set thread ID and optional optimization(affinity)

3. Set random number engine

4. Initialize the worker thread

5. Setup the worker run manager (geometry and physics)

6. Initialize the worker run manager

7. Loop over requests from master: workerRM->DoWork();

8. Terminate the worker thread

9. Cleanup split classes

StartThead(G4WorkerThread* context) Key methods!

Process a set of eventModulo events

Number of threads, id

• EventModulo is the number of events that each worker thread is
tasked to simulate before coming back to the master RunManager
for requesting the next sub-set of events
– Set by UI: /run/eventModule <M> <seedOnce>

– Default (M = 0) EventModulo = int(!!"!#$_&'&(!)

!!*+&#,)
)

– <seedOnce> specifies how frequent each worker thread is seeded by
the random number sequence centrally managed by the master thread

• Random number engine and reproducibility
– Each worker clones the random engine of the master thread
– seedOnce = 0 (default): seeds are set for every event of every worker

thread. This option guarantees event reproducibility regardless of
number of threads.

– seedOnce = 1: seeds are set only once for the first event of each run of
each worker thread. Event reproducibility is guaranteed only if the
same number of worker threads are used.

Processing Events and Reproducibility

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 9

• General guideline in Geant4
– Threads can share whatever is invariant (stable) during the event loop
– Transient objects that are specific to each event are thread-local

• static class/data are shared among all class instances and threads
– Geometry/Material (G4VUserDetectorConstruction)
– Physics data (G4VPhysicsList)

• G4ThreadLocal instances (and objects that are created by them)
– Classes designed to be per-thread, e.g., G4WorkerRunManager
– G4EventManager, G4TrackingManager, G4SteppingManager, G4SDManager
– G4Event, G4Track, G4Step, G4VHit, G4VSensitiveDetector
– G4VUserAction, G4UserField, G4Transporation and G4Navigator, etc.

• The split-class allows sharing class instances among threads with a
mixture of shared (read-only) and thread local storage data
– Geometry related: G4LogicalVolume, G4PhysicalVolume, G4Region, ..
– Physics related: G4ParticleDefinition, G4VPhysicsConstructors, etc.

Shared Data and Thread Safety

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 10

• Split class mechanism is to collect all per-thread objects into
a separate helper class, instances of which are organized in
an array, that is accessed via an index representing a unique
identifier of a given class instance (thread-safety via TLS)

• G4PaticleDefinition (one of physics related split classes)

Split Class Mechanism: An Example

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 11

G4ParticleDefintion::GetProcessManager() à (sm.offset()[instanceID]).processManager à pm_i

// Thread-local
G4ProcessA*
G4ProcessB*
G4ProcessC*

…

G4ProcessN*

G4ProcessManager

G4ProcessManager* pm_1
G4ProcessManager* pm_2
...
G4ProcessManager* pm_i
…
G4ProcessManager* pm_N

G4PDefData*

static G4PDefManager* sm
// Thread-shared data
G4double mass
G4double charge
G4double lifetime
…
// Instance-local data
G4int instanceID
G4ProcessManager* pm
…

G4ParticleDefinition

CreateInstance()
offset()

G4PDefManager
TLS

• Support global mutex types and automatic unlocking mechanism
– G4Mutex = std::mutex
– G4AutoLock = std::unique_lock<G4Mutex>

• An example of G4Mutex for reading primary particles from a file
– PrimaryGeneratorAction: G4ThreadLocal
– G4HEPEvtInterface: static (shared by all the PrimaryGeneratorAction)
– Without the mutex locking, each GeneratePrimaryVertex(G4Event* event)

will open input file multiple times and read same events one by one

G4Mutex and G4AutoLock

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 12

https://geant4.kek.jp/lxr/ident?i=std

• Geant4 supports a task-based framework (G4Tasking) from v11.0
– Based on PTL (parallel tasking library, developed by J. Madsen (AMD),

lightweight tasking system featuring thread-pool, task-group, and task-
queue using the C++ thread) or the TBB backend

– Support G4RunManagerType = {Serial, MT, Tasking,TBB} using
G4RunManagerFactory or environment variables

• G4Tasking opens opportunities for task-level parallelism
– Sub-event level parallelism (from events to tracks)

• A group of selected particles can be executed in a thread-pool
• A group of special tasks can be a task-group

– Heterogeneous computing with more diverse processing elements
• Heavy CPU centric (HTC) à combination of CPUs + Accelerators (GPUs)
• Workload decomposition and optimization for very specific domain tasks

for the efficiency triplet (power, performance, cost)

Geant4 Tasking

LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 13/21

• Process a task per thread by G4TaskRunManager
Geant4 Task Mode

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 14

G4RunManagerKernel

G4MTRunManager

G4Run G4PrimaryGenerator

G4WorkerRunManager G4WorkerRunManagerKernel

task-N

G4RunManager

G4MTRunManagerKernel DefineWorldVolume

DoEventLoop ProcessOneEvent

G4Run G4PrimaryGenerator

GenerateAnEvent
worker

DoEventLoop ProcessOneEvent

G4Run G4PrimaryGenerator

GenerateAnEvent

G4WorkerRunManage
r

G4WorkerRunManagerKern
el

task-1
task-2

task-i

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

DoEventLoop(n) à GenerateEvent(i) à ProcessOneEvent(i)

G4TaskRunManager

PTL::TaskRunManager

G4TaskRunManagerKernel

PTL::TaskManager PTL::ThreadPool

PTL::VUserTaskQueue

master

G4WorkerTaskRunManager G4WorkerTaskRunManagerKernel G4EventManager

MT

G4PrimaryGeneratorG4Run

creates

G4VUserActions

InitializePhysics

use

• What are main differences: G4Tasking facilitates
– Better load balancing: one thread can process more events than others
– User defined tasks with PTL::TaskRunManager

Geant4 Multithread vs. Tasking

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 15

wait

TaskRunManager User tasks hits

G4TaskGroup(G4ThreadPool *pool)

hits

Merge

task tls Event Loop hits

task tls Event Loop hits

task tls Event Loop hits

task tls Event Loop hits

BeamOn

Initialize

G4TaskRunManager

Shared
Data

Use

CreateAndStartWorkers

Concurrency

TaskGroup

Uneven

Event loops

• TaskRunManager: a class for run control in tasking for multi-
threaded runs which initializes ThreadPool and TaskManager

• ThreadPool: a class for an efficient thread-pool that accepts work in
the form of tasks

• TaskManager: a class for handling the wrapping of functions into
task objects and submitting them to a thread pool

• VUserTaskQueue: an abstract base class for creating a task queue
used by ThreadPool

Key Components of Geant4 Tasking

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 16

TaskRunManager

TaskManager
start_thread(), execute_thread()

VUserTaskQueue
wait(), ExecuteOnAllThreads()

ThreadPool
exec(), run(), join(), wait()

createcreate use_tbb

• Supports both native TaskGroup/UserTaskQueue and Intel® TBB
Tasking Types: Native (PTL) vs. TBB

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 17

TaskRunManager

TaskManager
start_thread(), execute_thread()

VUserTaskQueue
wait(), ExecuteOnAllThreads()

ThreadPool
exec(), run(), join(), wait()

createcreate use_tbb

use_tbb?tbb::task_arena
tbb::task_group

UserTaskQueue
vector<ThreadData>

vector<TaskSubQueue>
TaskGroup

list<VTask>
vector<FutureTask>

packaged_task
{promise, future}

yes no

• Phase-I: Geant4 Kernel extension
– Use G4TaskRunManager for sub-event parallelism
– Implement UserStackingAction to sort tracks into sub-events
– Implement Merge() method in G4Event if special merging treatment

(efficient I/O for hit collection or scoring) is required
• Phase-II: Interfaces or integrations to task-oriented packages

– Support specialized physics lists and/or detector construction
dedicated to sub-tasks if needed: examples
• G4HepEM (EM physics for HEP, designed to be compatible with GPUs)
• VecGeom/Cuda or surface-oriented geometry models and navigators

– Support generic interfaces to integrate external packages, e.g.,
• Opticks/NVIDIA OptiXTM (Optical photon simulation)
• Adept(CERN), Celeritas (US), etc. (EM particle transport)

– Facilitates heterogenous computing on HPC facilities equipped with
more diverse processing elements
• Offloading a variety of single-purpose, optimized sub-tasks to accelerators

Toward Sub-event Parallelism in Geant4

LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 18/21

• A hybrid workflow with selected tasks executed on GPUs
– Hadronic particle simulation on the CPU host (event-level tasks)
– EM particle (e∓, g) transport on co-processors (offloading task)
– Asynchronous I/O streams and Concurrent hit merging (I/O task)

– Applicable workflow for many experiments: @LHC, LArTPC, EIC, etc.

Example: EM Particle Transport on GPU

LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 19/21

merger

host

eg -interactors

{e∓, g, h} e∓, g

h Geant4
Tracking

Loop

lint

{e∓, g}

∧
∧

∧

∧

{e∓, g, h}

filter trigger
transporter

I/O
hits

{hits}

device

{e∓, g}

{e∓, g}

GPU EM
Transport

Loop

collector

• Direct submission to a task group with non-void return types

– Merge: a functor for merging HitCollection when join
– Propagate: a kernel function (task) for propagating tracks on GPUs

Tasking Code Example

LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 20/21

• Geant4 has been evolving to satisfy HEP computing needs and will
continue to evolve in future

• Geant4 supports a task-based framework (G4Tasking) suitable for
multithreading, concurrent tasking and heterogeneous workflows
– Event level parallelism
– Sub-event level parallelism
– (Track-level parallelism or user defined tasks)

• Some of examples of on-going HEP detection simulation projects
using GPUs as parts of efforts within the Geant4 R&D task force
– Offloading EM particle transport

• G4HepEM/Adept (https://github.com/apt-sim/AdePT)
• Celeritas/acceleritas (https://github.com/celeritas-project)

– Optical photon simulation (Geant4/Opticks/NVIDIA OptiXTM) (See Hans
Wenzel’s talk)

Summary

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 21

https://github.com/apt-sim/AdePT
https://github.com/celeritas-project/celeritas

Backup

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 22

G4WorkerRunManager::DoWork

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 23

else

next?

Start this run
BeamOn (nevents)

Unknown action
G4Exception

Build UI manager
with all UI commands

NEXT ITERATIONPROCESS UI

next != END WORKER

Action
loop

using Action = G4MTRunManager::WorkerActionRequest;
Action next = masterRM->ThisWorkerWaitForNextAction();DoWork

No more
Action

eventModulo

• Sharing of objects: a class (member methods) and data members
– Thread-local or thread-shared class instances
– Thread-shared or thread-local data field
– Instance-shared or instance-local data field

• To be thread-safe for 8 different possible combinations

– A, E à static const
– B, F à static G4ThreadLocal
– C, Dà nothing to do (and G à const)
– H à split class or G4Cache

Thread Safety for Multithreading Applications

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 24

• Objects that are specific to each event and belong to each thread
‘by design’: G4Event, Hits Collections, container of Primary Tracks

• Instances of key classes designed to be per-thread, e.g.,
G4WorkerRunManager

• Instance of others created in above classes remains thread-local:
G4EventManager, G4TrackingManager, G4SteppingManager,
G4SDManager, etc.

• Some classes must have a separate object (instance) for each
thread, as they are not thread-aware: Processes, G4Navigator, etc

• For many classes, each thread has an instance (copy) of the
relevant object as it was created by a per-thread manager:
G4Track, G4Step, G4VSensitiveDetector

• Thread-local objects are instantiated and initialized at the first
BeamOn

G4ThreadLocal

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 25

• Some classes must have a duality: they must maintain some
‘constant’ attributes which are shared by all threads, but also
provide data which is thread-specific: pointers to per-thread objects,
information which can be updated when a track is propagated by a
thread.

• These are the “split” classes, such as physical volume which can
have a different replica number (replicas, parameterized volumes,
divisions), a logical volume that has a different G4FieldManager
and can have a different material (in nested parameterization), etc.

• To enable collaboration with these, we require that user code
follows strict guidelines:
– UserActions must be initialized by the G4VUserActionInitialization

(static - one instance)
• Creating separate objects for a thread when it is called by that thread

– UserDetectorConstruction must have a method that creates Sensitive
Detectors and Field objects for a thread

Split Class

/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023 26

