Office of

#Fermilab ‘K@.‘}ENERTﬁEFY Science

Geant4 Multithreading and Tasking

Soon Yung Jun, Makoto Asai (JLab), John Apostolakis (CERN)
LArSoft Multithreading and Acceleration Workshop
March 2. 2023

2 /21

Geant4 Multithreading and Tasking
Motivations and benefits of Geant4 multithreading

— Take advantages of multi/many-core CPU architectures (FLOPS/Watt)
— Maximize event throughput with resource (memory) sharing on a chip

— Event-level parallelism is the natural choice as HEP events are
independent and each event can be simulated separately

Geant4 tasking extension to support

................

— Sub-event level parallelism for better load balancing (Concurrency)

— Task-level parallelism for efficient uses of resources (Heterogeneity)
Introduction of Geant4 multithreading (2013) and tasking (2021)

— POSIX pthread -> Parallel tasking library (PTL, based on C++ thread)
— Also support TBB (Intel® Thread Building Block) backend

1994 1998 2013 2021 2023

CERN RD44 v0.0 Geant4 v10.0 Geant4 MT -

Geant4 has been evolving continuously for more than two decades!

$& Fermilab
LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Geant4 Serial (Sequential) Mode

Process one event at a time per CPU process

3 /21

6" Geant4

int main()

{

// Create the run manager =y

// Set mandatory classes _

DetectorConstruction
PhysicsList
Actionlnitialization

G4Run

1P

G4RunManager

jill

G4VUserDetectorConstruction

G4VUserPhysicsList

G4VUserActionlnitialization

Geant4 Kernel

—

G4RunManagerKernel

J

DefineWorldVolume

InitializePhysics

G4VPrimaryGenerator

VAN

II“I

// Initialize the run manager

//Ul: BeamOn
RunManager->BeamOn(N) ___

}

-

Uq SYSp——
N

7

G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

DoEventLoop(N) = GenerateEvent(i) = ProcessOneEvent(i)

use

€ Fermilab

LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Geant4 Multithreading Mode

« Design principles
— Minimize changes in user-codes (maintain APl changes at minimum)
— Minimize mutex/lock (avoid deadlock and data race)

— Build a simplified master/worker model
« The master thread is responsible for initialization of global shared data

(e.g., geometry and physics data) and configures worker threads, but does

not process any event

» Worker threads initialize thread local data and do actual work for the event
processing (i.e., start the event loop and process events)

4 /21

Master

Initialize

Shared
Data

Process

6" Geant4

......................................
e Ss

Threads
create | Worker » Event Loop
Worker | tis » Event Loop
Worker | tis » Event Loop
Worker | tis » Event Loop

of
*
*
‘Q
*

2% Fermilab

LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Geant4 Event-level Multithreading 6 Geant4

« Embarrassingly parallel application without any dependence and
communication between parallel tasks

« Beneficial when forking N-processes of a Geant4 application
requires more memory than resources provided by the system

Memory/application lD = l (sharable) + D (local)

M Available r T | I | | | | | Available
L r—-'/‘_ Memory - Memory
UUBBBRRREE) o Imllllillll-:l

Nprocesses < (Total memory) /(l+ [) < Nthreags < (Total memory -l) /D

« Akey consideration for multi-threading is a substantial amount of
the memory shared by threads/tasks
— data generated at initialization (geometry/material, EM processes)
— data read in by multiple (hadronic) processes (lazy initialization)
« Data initialization is currently sequential — the full potential for

sharing data is achieved after multiple events have been simulated

3£ Fermilab
5 /21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Geant4 Multithreading Performance 6 Geant4

.................

- Memory reduction (r,) by the fraction of shared memory (/) and the
number of cores/threads (N): Rf = (1 —-f)+ f/N

Memory (RSS-SHARED) - 50 GeV =~ Memory Reduction - 50 GeV «
54000"|"'I"'I“'|"'I"'l“'l"'l R = 1.6_-'|ll'|l"|lll]lll]lll]lll]lll]_
= —&— cmsExpSequential o f !i—(1.4 F —#— RSS-SHARED _:
Q —&— cmsExpMT ' & F —e-vsizE]
< 3000 3 12f
T Geant4 v11.1) O o
7 7 I
A CMS+FTFP_BERT - E : \

& 2000 ol S 08

: RN AN

§ S P N]

= 1000 5 04f i = S]
5 o2f f~0.75
« r]
= -
S 0 |||||||||||||||||||||||||||||||

2 4 6 8 10 12 14 16 é 2 4 6 8 10 12 14 16

N Core N Core

« Scalability on Intel® Xeon Phi (KNL, speed up by the number of threads)

CMS geometry (GDML), =~ 50 GeV (FTFP_BERT), B field (4T) - KNL
r ﬁ.......-....v................- REmsasssssssRsasdasmmng »

“I Physical Hyperthreading

cores

Speedup

Geant4 v10.3

50 100 150 200

Number of threads

3£ Fermilab
6 /21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Geant4 Multithreading Kernels 6 Geant4
* Process n-eventModulo per thread (requested by the master)

G4MTRunManager = G4MTRunManagerKernel DefineWorldVolume
A
InitializePhysics creates
) 4 y T2
G4RunManager — G4RunManagerKernel [G4UserRunAction]
master use
o 'o.
G4WorkerRunManager [G4WorkerRunManagerKernel -cl G4EventManager
A —
G4Run » G4PrimaryGenerator G4VUserActions o
l N
worker-1 DoEventLoop(n) = GenerateEvent(i) = ProcessOneEvent(i)
worker-2 DoEventLoop(n) = GenerateEvent(i) = ProcessOneEvent(i)
worker-i DoEventLoop(n) = GenerateEvent(i) = ProcessOneEvent(i)
worker-N DoEventLoop(n) = GenerateEvent(i) = ProcessOneEvent(i)
2= Fermilab

7 /21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

G4MTRunManagerKernel::StartThread

. Number of threads, id

v
StartThead(G4WorkerThread™ context) | #=======sssssscsssssnem-—-

G4Threading: :WorkerThreadJoinsPool()

6" Geant4

Key melthods!

B

»

1. Create the worker run manager

Set thread ID and optional optimization(af

inity)

Set random number engine

Initialize the worker thread

fe——r———=r

Setup the worker run manager (geometry andiphysics)

Initialize the worker run manager

Loop over requests from master: |workerRM->DoWork();

. Terminate the worker thread

Q||| N|[|oojuU||B]||WI| N

Cleanup split classes

G4Threading: :WorkerThreadLeavesPool()

¥

8 /21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Process a set of eventModulo events

2% Fermilab

Processing Events and Reproducibility 6 Geant4

« EventModulo is the number of events that each worker thread is
tasked to simulate before coming back to the master RunManager
for requesting the next sub-set of events

— Set by Ul: /run/eventModule <M> <seedOnce>

— Default (M = 0) EventModulo = int(\[N—male”e”“)

threads

— <seedOnce> specifies how frequent each worker thread is seeded by
the random number sequence centrally managed by the master thread

« Random number engine and reproducibility
— Each worker clones the random engine of the master thread

— seedOnce = 0 (default): seeds are set for every event of every worker
thread. This option guarantees event reproducibility regardless of
number of threads.

— seedOnce = 1: seeds are set only once for the first event of each run of
each worker thread. Event reproducibility is guaranteed only if the
same number of worker threads are used.

3£ Fermilab
9 /21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Shared Data and Thread Safety 6 Geant4

« General guideline in Geant4
— Threads can share whatever is invariant (stable) during the event loop
— Transient objects that are specific to each event are thread-local

- static class/data are shared among all class instances and threads
— Geometry/Material (G4VUserDetectorConstruction)
— Physics data (G4VPhysicsList)

 G4ThreadlLocal instances (and objects that are created by them)
— Classes designed to be per-thread, e.g., G4WorkerRunManager
— G4EventManager, G4TrackingManager, G4SteppingManager, G4SDManager
— @G4Event, G4Track, G4Step, G4VHit, G4VSensitiveDetector
— G4VUserAction, G4UserField, G4Transporation and G4Navigator, etc.

« The split-class allows sharing class instances among threads with a
mixture of shared (read-only) and thread local storage data
— Geometry related: G4LogicalVolume, G4PhysicalVolume, G4Region, ..
— Physics related: G4ParticleDefinition, G4VPhysicsConstructors, etc.

3£ Fermilab
10/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Split Class Mechanism: An Example 6 Geant4

« Split class mechanism is to collect all per-thread objects into
a separate helper class, instances of which are organized in
an array, that is accessed via an index representing a unique
identifier of a given class instance (thread-safety via TLS)

» G4PaticleDefinition (one of physics related split classes)

G4ParticleDefintion::GetProcessManager() = (sm.offset()[instancelD]).processManager = pm_i

G4ParticleDefinition G4PDefManager —> G4ProcessManager
static G4PDefManager® sm reeeoeeneee > Createlnstance() eeseeesesss . TLS // Thread-local
// Thread-shared data offset() G4ProcessA*
G4double mass : G4ProcessB*
G4double charge 5 G4ProcessC*
G4double lifetime G4PDefData*

: G4ProcessManager* pm_1
// Instance-local data i G4ProcessManager* pm_2
G4dint instancelD :ereeeeeeerennes v
G4ProcessManager* pm ¥ G4ProcessManager* pm_i =——
G4ProcessN*

G4ProcessManager* pm_N

2& Fermilab
11/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

G4Mutex and G4AutoLock 6 GeanT4

« Support global mutex types and automatic unlocking mechanism
— G4Mutex = std::mutex
— G4AutoLock = std::unique_lock<G4Mutex>

* An example of G4Mutex for reading primary particles from a file
— PrimaryGeneratorAction: G4ThreadLocal
— G4HEPEVvtinterface: static (shared by all the PrimaryGeneratorAction)

— Without the mutex locking, each GeneratePrimaryVertex(G4Event* event)

will open input file multiple times and read same events one by one

G4Mutex interface_mutex = GAMUTEX_INITIALIZER;
G4Mutex generator_mutex = GAMUTEX_INITIALIZER;
G4HEPEvtInterfacex PrimaryGeneratorAction::hepEvt = nullptr;

PrimaryGeneratorAction::PrimaryGeneratorAction(G4String file_name)

{
G4AutoLock scoped_lock(&interface_mutex);
if(interface == nullptr) interface = new G4HEPEvtInterface(file_name);

}

void PrimaryGeneratorAction::GeneratePrimaries(G4Event* event)

{

G4AutoLock| scoped_lock(&generator_mutex);
interface->GeneratePrimaryVertex(event);

}

$& Fermilab
12/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

https://geant4.kek.jp/lxr/ident?i=std

Geant4 Tasking 6 Geant4
« Geant4 supports a task-based framework (G4 Tasking) from v11.0

— Based on PTL (parallel tasking library, developed by J. Madsen (AMD),
lightweight tasking system featuring thread-pool, task-group, and task-
gueue using the C++ thread) or the TBB backend

— Support G4RunManagerType = {Serial, MT, Tasking, TBB} using

.
e

autox rm = G4RunManagerFactory::CreateRunManager(G4RunManagerType::Tasking);

« G4Tasking opens opportunities for task-level parallelism
— Sub-event level parallelism (from events to tracks)
» A group of selected particles can be executed in a thread-pool
» A group of special tasks can be a task-group
— Heterogeneous computing with more diverse processing elements
» Heavy CPU centric (HTC) - combination of CPUs + Accelerators (GPUSs)

» Workload decomposition and optimization for very specific domain tasks
for the efficiency triplet (power, performance, cost)

3£ Fermilab
13/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Geant4 Task Mode 6 Geant4
* Process a task per thread by G4 TaskRunManager

creates
DefineWorldVolume
)
InitializePhysics
3
master MT e,
use ¢
—
]
v
-
task-1 DoEventLoop(n) > GenerateEvent(i) > ProcessOneEvent(i)
task-2 DoEventLoop(n) > GenerateEvent(i) = ProcessOneEvent(i)
task-i DoEventLoop(n) = GenerateEvent(i) = ProcessOneEvent(i)
task-N DoEventLoop(n) > GenerateEvent(i) = ProcessOneEvent(i)

14/21

3= Fermilab
LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Geant4 Multithread vs. Tasking 6 Geant4
« What are main differences: G4 Tasking facilitates
— Better load balancing: one thread can process more events than others
— User defined tasks with PTL::TaskRunManager

CreateAndStartWorkers » G4TaskGroup(G4ThreadPool *pool)
Uneven
3

G4TaskRunManager task s *| Event Loop Merge
é 3
InitializeJ task tls *| Event Loop hits
5 ' hits
i —
| task *| Event Loop .
Data —
use | | task s *| Event Loop
» Event loops wait
BeamOn
@ Concurrency
%

TaskRunManager [—{ TaskGroup —" User tasks —@

$& Fermilab

15/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Key Components of Geant4 Tasking 6 Geant4

................

« TaskRunManager: a class for run control in tasking for muilti-
threaded runs which initializes ThreadPool and TaskManager

TaskRunManager

-
~~o
~ -
-~
-~
-~
-

create create | use_tbb

TaskManager ’ ThreadPool i VUserTaskQueue

start_thread(), execute_thread() exec(), run(), join(), wait() wait(), ExecuteOnAllThreads()

« ThreadPool: a class for an efficient thread-pool that accepts work in
the form of tasks

« TaskManager: a class for handling the wrapping of functions into
task objects and submitting them to a thread pool

« VUserTaskQueue: an abstract base class for creating a task queue
used by ThreadPool

3£ Fermilab
16/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

uuuuuuuuuuuuuuuuu

« Supports both native TaskGroup/UserTaskQueue and Intel® TBB

Tasking Types: Native (PTL) vs. TBB 6 Geant4

TaskRunManager
create create|use_thb T T===ee__
« s /'S
TaskManager) ThreadPool) VUserTaskQueue
start_thread(), execute_thread()) exec(), run(), join(), wait() i wait(), ExecuteOnAllThreads()

tbb::task_arena A e no UserTaskQueue
tbb::task_group - vector<ThreadData>

) 4

I—

A

packaged task . list<VTask>) vector<TaskSubQueue>
{promise, future} vector<FutureTask> TaskGroup
4& Fermilab

17/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Toward Sub-event Parallelism in Geant4 6 Geant4

................

* Phase-Il: Geant4 Kernel extension
— Use G4 TaskRunManager for sub-event parallelism
— Implement UserStackingAction to sort tracks into sub-events
— Implement Merge() method in G4Event if special merging treatment
(efficient 1/O for hit collection or scoring) is required
« Phase-ll: Interfaces or integrations to task-oriented packages

— Support specialized physics lists and/or detector construction
dedicated to sub-tasks if needed: examples
* G4HepEM (EM physics for HEP, designed to be compatible with GPUS)
* VecGeom/Cuda or surface-oriented geometry models and navigators
— Support generic interfaces to integrate external packages, e.g.,
» Opticks/NVIDIA OptiX™ (Optical photon simulation)
» Adept(CERN), Celeritas (US), etc. (EM particle transport)
— Facilitates heterogenous computing on HPC facilities equipped with
more diverse processing elements
» Offloading a variety of single-purpose, optimized sub-tasks to accelerators

3£ Fermilab
18/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Example: EM Particle Transport on GPU 6 Geant4

................

« A hybrid workflow with selected tasks executed on GPUs
— Hadronic particle simulation on the CPU host (event-level tasks)
— EM particle (e*, y) transport on co-processors (offloading task)
— Asynchronous I/0O streams and Concurrent hit merging (1/O task)

;i'lnt hits
host o :l » 4,.

h Geantd \(€T,7, h}
Tracking {hitsj| | Merger
B Loop N -
{e*, v, h} o er,y ».[\. {e”, v} transporter

filter collector V" trigger

GPU EM
Transport
Loop

o

ey -interactors

{e*, v}

device {e*, v}

— Applicable workflow for many experiments: @LHC, LArTPC, EIC, etc.

3£ Fermilab
19/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Tasking Code Example 6 GeanT4
» Direct submission to a task group with non-void return types

* A tasking example with a non-void return type from user tasks.
*/
void DeviceManager::DolIt(id_type event_id, const G4Track& track)

{
// Store this track to the stack

collector—->AddTrack(event_id, track);

// Trigger offloading
if(trigger())
{

// Submit work to a GPU task group

TaskGroup<HitCollection> gpu_tasks(Merge, manager->GetThreadPool());
gpu_tasks.exec(Propagate, collector->GetStack(), 1);
gpu_tasks.exec(Propagate, collector—->GetStack(), 2);

// Merge hit collections from tasks
auto result = gpu_tasks.join();

// Clear the stack
collector—>Clear();

— Merge: a functor for merging HitCollection when join
— Propagate: a kernel function (task) for propagating tracks on GPUs

$& Fermilab
20/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Summary 5 Geant4

« Geant4 has been evolving to satisfy HEP computing needs and will
continue to evolve in future
« Geant4 supports a task-based framework (G4 Tasking) suitable for
multithreading, concurrent tasking and heterogeneous workflows
— Event level parallelism
— Sub-event level parallelism
— (Track-level parallelism or user defined tasks)
« Some of examples of on-going HEP detection simulation projects
using GPUs as parts of efforts within the Geant4 R&D task force

— Offloading EM particle transport
* G4HepEM/Adept (https://github.com/apt-sim/AdePT)
» Celeritas/acceleritas (https://github.com/celeritas-project)

— Optical photon simulation (Geant4/Opticks/NVIDIA OptiX™) (See Hans
Wenzel’s talk)

$& Fermilab
21/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

https://github.com/apt-sim/AdePT
https://github.com/celeritas-project/celeritas

6" GeanT4

Backup

$& Fermilab
22/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

................

G4WorkerRunManager::DoWork

using Action = G4MTRunManager::WorkerActionRequest;

DoWork Action next = masterRM->ThisWorkerWaitForNextAction();
] Action
loop
next != END WORKER 'j
PROCESS Ul NEXT ITERATION
next?

else
\ 4

Start this run
BeamOn (nevents)

\ 4

Build Ul manager
with all Ul commands

Unknown action
G4Exception

Action
eventModulo

2% Fermilab

23/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Thread Safety for Multithreading Applications & Geanr4

uuuuuuuuuuuuuuuu

« Sharing of objects: a class (member methods) and data members

— Thread-local or thread-shared class instances
— Thread-shared or thread-local data field
— Instance-shared or instance-local data field

« To be thread-safe for 8 different possible combinations

thread-shared data field thread-local data field thread-shared data field thread-local data field

instance-shared
data field

msdt:;ogélo?l probably nothing to do

instance-local
data field

— A, E - static const

— B, F - static G4ThreadlLocal

— C, D= nothing to do (and G - const)
— H - split class or G4Cache

24/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

2% Fermilab

G4ThreadLocal 6 Geant4

................

« QObjects that are specific to each event and belong to each thread
‘by design’: G4Event, Hits Collections, container of Primary Tracks

* Instances of key classes designed to be per-thread, e.g.,
G4WorkerRunManager

 Instance of others created in above classes remains thread-local:
G4EventManager, G4TrackingManager, G4SteppingManager,
G4SDManager, etc.

« Some classes must have a separate object (instance) for each
thread, as they are not thread-aware: Processes, G4Navigator, etc

« For many classes, each thread has an instance (copy) of the
relevant object as it was created by a per-thread manager:
G4Track, G4Step, G4VSensitiveDetector

« Thread-local objects are instantiated and initialized at the first
BeamOn

$& Fermilab
25/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

Split Class 6 GeanT4

« Some classes must have a duality: they must maintain some
‘constant’ attributes which are shared by all threads, but also
provide data which is thread-specific: pointers to per-thread objects,
information which can be updated when a track is propagated by a
thread.

« These are the “split” classes, such as physical volume which can
have a different replica number (replicas, parameterized volumes,
divisions), a logical volume that has a different G4FieldManager
and can have a different material (in nested parameterization), etc.

* To enable collaboration with these, we require that user code
follows strict guidelines:
— UserActions must be initialized by the G4VUserActionlnitialization
(static - one instance)
» Creating separate objects for a thread when it is called by that thread

— UserDetectorConstruction must have a method that creates Sensitive
Detectors and Field objects for a thread

$& Fermilab
26/21 LArSoft Multi-threading and Acceleration Workshop, March. 2, 2023

