
Threads of parallelism with the
Wire-Cell Toolkit

Brett Viren for the Wire-Cell team

LArSoft Multithreading and Acceleration Workshop
March 2023

Brett Viren WCT MT March 3, 2023 1 / 21

Topics

Overview of the Wire-Cell Toolkit (WCT).
With a focus on multithreading (MT).

Describe the main ways we use WCT.
With art + LArSoft or “stand alone”.
Implications on for exploiting MT.

MT strategies to key LArTPC software problems.
How WCT can contribute.

Brett Viren WCT MT March 3, 2023 2 / 21

Wire-Cell Toolkit (WCT) in a nutshell

WCT produces a set of C++ shared libraries providing:
Software development patterns such as: user con�guration, plugins, component factory,
interface classes, code-aggregation methods, and support for application, library and
package building.

A collection of general-purpose and LArTPC-speci�c utility functions.

A taxonomy of algorithm and data interfaces (abstract base classes) relevant to LArTPC data
processing and which are the building blocks of the toolkit architecture.

A multithreaded (MT) and single-threaded (ST) data �ow programming paradigm (DFP)
graph execution engine providing WCT’s primary execution model.

Key LArTPC algorithms and the detailed con�guration to apply them to most of today’s
major and prototype LArTPC detectors.

A research and development platform for network-distributed applications,
hardware-acceleration, high-performance computing and (production-quality) AI/ML inference.

Brett Viren WCT MT March 3, 2023 3 / 21

WCT implements data �ow programming (DFP) paradigm

0 DumpFrames
[0]

FrameFileSource
[0] 0 IFrame

In general, DFP aggregates code units as nodes in a graph sharing data over edges.
Graphs are executed: node body methods are run, typed data is consumed and
produced on node ports and transferred between ports along edges.
A WCT nodes, ports and data are strongly typed via C++ interface classes.
A nodes may be an IConfigurable to receive user con�guration.

The DFP graph forms the basis for WCT’s primary MT mechanism.

Brett Viren WCT MT March 3, 2023 4 / 21

WCT provides two graph execution engines

Pgrapher an ST engine which minimizes memory usage.
Executes nodes in reverse order of topological sort.
An emergent “peaked wave” of data �ows through the graph.

TbbFlow an MT engine which maximizes CPU utilization.
Executes nodes concurrently up to a con�gurable maximum
thread count via TBB flow_graph.
A node will not execute concurrently with itself.

Both engines receive identical user-con�guration to build the graph.
A trivial con�guration change is needed to switch between engines.

Brett Viren WCT MT March 3, 2023 5 / 21

Larger graph example: sim, sigproc, 3D imaging, �le I/O

0 AddNoise
[0] 0 0 Digitizer

[0] 0 0 FrameFanout
[orig0]

0

1

0 AddNoise
[1] 0 0 Digitizer

[1] 0

0 FrameFanout
[orig1]

0

1

0 AddNoise
[2] 0 0 Digitizer

[2] 0 0 FrameFanout
[orig2]

0

1

0 AddNoise
[3] 0

0 Digitizer
[3] 0 0 FrameFanout

[orig3]
0

1

0 AddNoise
[4] 0 0 Digitizer

[4] 0

0 FrameFanout
[orig4]

0

1

0 AddNoise
[5] 0

0 Digitizer
[5] 0 0 FrameFanout

[orig5]
0

1

0 BlobClustering
[0] 0 0 BlobGrouping

[0] 0 0 BlobSolving
[0] 0

0 BlobClustering
[1] 0 0 BlobGrouping

[1] 0 0 BlobSolving
[1] 0

0 BlobClustering
[2] 0 0 BlobGrouping

[2] 0 0 BlobSolving
[2] 0

0 BlobClustering
[3] 0 0 BlobGrouping

[3] 0 0 BlobSolving
[3] 0

0 BlobClustering
[4] 0 0 BlobGrouping

[4] 0 0 BlobSolving
[4] 0

0 BlobClustering
[5] 0 0 BlobGrouping

[5] 0 0 BlobSolving
[5] 0

0 ClusterFileSink
[img0]

0 ClusterFileSink
[img1]

0 ClusterFileSink
[img2]

0 ClusterFileSink
[img3]

0 ClusterFileSink
[img4]

0 ClusterFileSink
[img5]

0

1
BlobSetSync

[0] 0

0

1
BlobSetSync

[1] 0

0

1
BlobSetSync

[2] 0

0

1
BlobSetSync

[3] 0

0

1
BlobSetSync

[4] 0

0

1
BlobSetSync

[5] 0

0 DepoSetDrifter
(unnamed) 0 0 DepoSetFanout

[fanout]

0

1

2

3

4

5

0 DepoTransform
[0] 0

0 DepoTransform
[1] 0

0 DepoTransform
[2] 0

0 DepoTransform
[3] 0

0 DepoTransform
[4] 0

0 DepoTransform
[5] 0

0 Reframer
[0] 0

0 Reframer
[1] 0

0 Reframer
[2] 0

0 Reframer
[3] 0

0 Reframer
[4] 0

0 Reframer
[5] 0

0 FrameFileSink
[orig0]

0 OmnibusNoiseFilter
[0] 0

0 FrameFileSink
[orig1]

0 OmnibusNoiseFilter
[1] 0

0 FrameFileSink
[orig2]

0 OmnibusNoiseFilter
[2] 0

0 FrameFileSink
[orig3]

0 OmnibusNoiseFilter
[3] 0

0 FrameFileSink
[orig4]

0 OmnibusNoiseFilter
[4] 0

0 FrameFileSink
[orig5]

0 OmnibusNoiseFilter
[5] 0

0 FrameFanout
[gauss0]

0

1 0 FrameFileSink
[gauss0]

0 SumSlices
[0] 0 0 SliceFanout

[0]
0

1

0 FrameFanout
[gauss1]

0

1

0 FrameFileSink
[gauss1]

0 SumSlices
[1] 0 0 SliceFanout

[1]
0

1

0 FrameFanout
[gauss2]

0

1

0 FrameFileSink
[gauss2]

0 SumSlices
[2] 0 0 SliceFanout

[2]
0

1

0 FrameFanout
[gauss3]

0

1

0 FrameFileSink
[gauss3]

0 SumSlices
[3] 0 0 SliceFanout

[3]
0

1

0 FrameFanout
[gauss4]

0

1

0 FrameFileSink
[gauss4]

0 SumSlices
[4] 0 0 SliceFanout

[4]
0

1

0 FrameFanout
[gauss5]

0

1

0 FrameFileSink
[gauss5]

0 SumSlices
[5] 0 0 SliceFanout

[5]
0

1

0 OmnibusSigProc
[0] 0

0 OmnibusSigProc
[1] 0

0 OmnibusSigProc
[2] 0

0 OmnibusSigProc
[3] 0

0 OmnibusSigProc
[4] 0

0 OmnibusSigProc
[5] 0

0 GridTiling
[0-f0] 0

0 GridTiling
[0-f1] 0

0 GridTiling
[1-f0] 0

0 GridTiling
[1-f1] 0

0 GridTiling
[2-f0] 0

0 GridTiling
[2-f1] 0

0 GridTiling
[3-f0] 0

0 GridTiling
[3-f1] 0

0 GridTiling
[4-f0] 0

0 GridTiling
[4-f1] 0

0 GridTiling
[5-f0] 0

0 GridTiling
[5-f1] 0

NumpyDepoSetLoader
[depos] 0

6 APAs of ProtoDUNE-SP re�ected into 6 pipelines of nodes.

The TbbFlow engine produces two types of emergent MT patterns −→

Brett Viren WCT MT March 3, 2023 6 / 21

Transverse parallelism

0 AddNoise
[0] 0 0 Digitizer

[0] 0 0 FrameFanout
[orig0]

0

1

0 AddNoise
[1] 0 0 Digitizer

[1] 0

0 FrameFanout
[orig1]

0

1

0 AddNoise
[2] 0 0 Digitizer

[2] 0 0 FrameFanout
[orig2]

0

1

0 AddNoise
[3] 0

0 Digitizer
[3] 0 0 FrameFanout

[orig3]
0

1

0 AddNoise
[4] 0 0 Digitizer

[4] 0

0 FrameFanout
[orig4]

0

1

0 AddNoise
[5] 0

0 Digitizer
[5] 0 0 FrameFanout

[orig5]
0

1

0 BlobClustering
[0] 0 0 BlobGrouping

[0] 0 0 BlobSolving
[0] 0

0 BlobClustering
[1] 0 0 BlobGrouping

[1] 0 0 BlobSolving
[1] 0

0 BlobClustering
[2] 0 0 BlobGrouping

[2] 0 0 BlobSolving
[2] 0

0 BlobClustering
[3] 0 0 BlobGrouping

[3] 0 0 BlobSolving
[3] 0

0 BlobClustering
[4] 0 0 BlobGrouping

[4] 0 0 BlobSolving
[4] 0

0 BlobClustering
[5] 0 0 BlobGrouping

[5] 0 0 BlobSolving
[5] 0

0 ClusterFileSink
[img0]

0 ClusterFileSink
[img1]

0 ClusterFileSink
[img2]

0 ClusterFileSink
[img3]

0 ClusterFileSink
[img4]

0 ClusterFileSink
[img5]

0

1
BlobSetSync

[0] 0

0

1
BlobSetSync

[1] 0

0

1
BlobSetSync

[2] 0

0

1
BlobSetSync

[3] 0

0

1
BlobSetSync

[4] 0

0

1
BlobSetSync

[5] 0

0 DepoSetDrifter
(unnamed) 0 0 DepoSetFanout

[fanout]

0

1

2

3

4

5

0 DepoTransform
[0] 0

0 DepoTransform
[1] 0

0 DepoTransform
[2] 0

0 DepoTransform
[3] 0

0 DepoTransform
[4] 0

0 DepoTransform
[5] 0

0 Reframer
[0] 0

0 Reframer
[1] 0

0 Reframer
[2] 0

0 Reframer
[3] 0

0 Reframer
[4] 0

0 Reframer
[5] 0

0 FrameFileSink
[orig0]

0 OmnibusNoiseFilter
[0] 0

0 FrameFileSink
[orig1]

0 OmnibusNoiseFilter
[1] 0

0 FrameFileSink
[orig2]

0 OmnibusNoiseFilter
[2] 0

0 FrameFileSink
[orig3]

0 OmnibusNoiseFilter
[3] 0

0 FrameFileSink
[orig4]

0 OmnibusNoiseFilter
[4] 0

0 FrameFileSink
[orig5]

0 OmnibusNoiseFilter
[5] 0

0 FrameFanout
[gauss0]

0

1 0 FrameFileSink
[gauss0]

0 SumSlices
[0] 0 0 SliceFanout

[0]
0

1

0 FrameFanout
[gauss1]

0

1

0 FrameFileSink
[gauss1]

0 SumSlices
[1] 0 0 SliceFanout

[1]
0

1

0 FrameFanout
[gauss2]

0

1

0 FrameFileSink
[gauss2]

0 SumSlices
[2] 0 0 SliceFanout

[2]
0

1

0 FrameFanout
[gauss3]

0

1

0 FrameFileSink
[gauss3]

0 SumSlices
[3] 0 0 SliceFanout

[3]
0

1

0 FrameFanout
[gauss4]

0

1

0 FrameFileSink
[gauss4]

0 SumSlices
[4] 0 0 SliceFanout

[4]
0

1

0 FrameFanout
[gauss5]

0

1

0 FrameFileSink
[gauss5]

0 SumSlices
[5] 0 0 SliceFanout

[5]
0

1

0 OmnibusSigProc
[0] 0

0 OmnibusSigProc
[1] 0

0 OmnibusSigProc
[2] 0

0 OmnibusSigProc
[3] 0

0 OmnibusSigProc
[4] 0

0 OmnibusSigProc
[5] 0

0 GridTiling
[0-f0] 0

0 GridTiling
[0-f1] 0

0 GridTiling
[1-f0] 0

0 GridTiling
[1-f1] 0

0 GridTiling
[2-f0] 0

0 GridTiling
[2-f1] 0

0 GridTiling
[3-f0] 0

0 GridTiling
[3-f1] 0

0 GridTiling
[4-f0] 0

0 GridTiling
[4-f1] 0

0 GridTiling
[5-f0] 0

0 GridTiling
[5-f1] 0

NumpyDepoSetLoader
[depos] 0

Example of 6 cores being active (red nodes).

One node in each pipeline executes due to the fan-out.
We exploit this with algorithms that are �ne-grain “across” the detector.

I Note 6-way per-APA and 12-way per-APA-face.
High core utilization up to number of major pipelines.

I Trivial exploitation of "extra" cores (over)allocated just to get their memory.
I More cores than pipelines will be wasted.

But −→
Brett Viren WCT MT March 3, 2023 7 / 21

Longitudinal parallelism

0 AddNoise
[0] 0 0 Digitizer

[0] 0 0 FrameFanout
[orig0]

0

1

0 AddNoise
[1] 0 0 Digitizer

[1] 0

0 FrameFanout
[orig1]

0

1

0 AddNoise
[2] 0 0 Digitizer

[2] 0 0 FrameFanout
[orig2]

0

1

0 AddNoise
[3] 0

0 Digitizer
[3] 0 0 FrameFanout

[orig3]
0

1

0 AddNoise
[4] 0 0 Digitizer

[4] 0

0 FrameFanout
[orig4]

0

1

0 AddNoise
[5] 0

0 Digitizer
[5] 0 0 FrameFanout

[orig5]
0

1

0 BlobClustering
[0] 0 0 BlobGrouping

[0] 0 0 BlobSolving
[0] 0

0 BlobClustering
[1] 0 0 BlobGrouping

[1] 0 0 BlobSolving
[1] 0

0 BlobClustering
[2] 0 0 BlobGrouping

[2] 0 0 BlobSolving
[2] 0

0 BlobClustering
[3] 0 0 BlobGrouping

[3] 0 0 BlobSolving
[3] 0

0 BlobClustering
[4] 0 0 BlobGrouping

[4] 0 0 BlobSolving
[4] 0

0 BlobClustering
[5] 0 0 BlobGrouping

[5] 0 0 BlobSolving
[5] 0

0 ClusterFileSink
[img0]

0 ClusterFileSink
[img1]

0 ClusterFileSink
[img2]

0 ClusterFileSink
[img3]

0 ClusterFileSink
[img4]

0 ClusterFileSink
[img5]

0

1
BlobSetSync

[0] 0

0

1
BlobSetSync

[1] 0

0

1
BlobSetSync

[2] 0

0

1
BlobSetSync

[3] 0

0

1
BlobSetSync

[4] 0

0

1
BlobSetSync

[5] 0

0 DepoSetDrifter
(unnamed) 0 0 DepoSetFanout

[fanout]

0

1

2

3

4

5

0 DepoTransform
[0] 0

0 DepoTransform
[1] 0

0 DepoTransform
[2] 0

0 DepoTransform
[3] 0

0 DepoTransform
[4] 0

0 DepoTransform
[5] 0

0 Reframer
[0] 0

0 Reframer
[1] 0

0 Reframer
[2] 0

0 Reframer
[3] 0

0 Reframer
[4] 0

0 Reframer
[5] 0

0 FrameFileSink
[orig0]

0 OmnibusNoiseFilter
[0] 0

0 FrameFileSink
[orig1]

0 OmnibusNoiseFilter
[1] 0

0 FrameFileSink
[orig2]

0 OmnibusNoiseFilter
[2] 0

0 FrameFileSink
[orig3]

0 OmnibusNoiseFilter
[3] 0

0 FrameFileSink
[orig4]

0 OmnibusNoiseFilter
[4] 0

0 FrameFileSink
[orig5]

0 OmnibusNoiseFilter
[5] 0

0 FrameFanout
[gauss0]

0

1 0 FrameFileSink
[gauss0]

0 SumSlices
[0] 0 0 SliceFanout

[0]
0

1

0 FrameFanout
[gauss1]

0

1

0 FrameFileSink
[gauss1]

0 SumSlices
[1] 0 0 SliceFanout

[1]
0

1

0 FrameFanout
[gauss2]

0

1

0 FrameFileSink
[gauss2]

0 SumSlices
[2] 0 0 SliceFanout

[2]
0

1

0 FrameFanout
[gauss3]

0

1

0 FrameFileSink
[gauss3]

0 SumSlices
[3] 0 0 SliceFanout

[3]
0

1

0 FrameFanout
[gauss4]

0

1

0 FrameFileSink
[gauss4]

0 SumSlices
[4] 0 0 SliceFanout

[4]
0

1

0 FrameFanout
[gauss5]

0

1

0 FrameFileSink
[gauss5]

0 SumSlices
[5] 0 0 SliceFanout

[5]
0

1

0 OmnibusSigProc
[0] 0

0 OmnibusSigProc
[1] 0

0 OmnibusSigProc
[2] 0

0 OmnibusSigProc
[3] 0

0 OmnibusSigProc
[4] 0

0 OmnibusSigProc
[5] 0

0 GridTiling
[0-f0] 0

0 GridTiling
[0-f1] 0

0 GridTiling
[1-f0] 0

0 GridTiling
[1-f1] 0

0 GridTiling
[2-f0] 0

0 GridTiling
[2-f1] 0

0 GridTiling
[3-f0] 0

0 GridTiling
[3-f1] 0

0 GridTiling
[4-f0] 0

0 GridTiling
[4-f1] 0

0 GridTiling
[5-f0] 0

0 GridTiling
[5-f1] 0

NumpyDepoSetLoader
[depos] 0

Example of 13 cores being active.

Multiple nodes in a single pipeline may execute in parallel with MT when new data
is input while older data still "in �ight".

However, free �owing input may �ll graph, exhaust memory.
I Simple solution: limit total input size to be “small enough”.
I Future: “dynamic backpressure”, designs exist, need implementations.

WCT �le sources nodes will induce longitudinal parallelism.
I The art event-based execution model will not (transverse parallelism, yes).

Brett Viren WCT MT March 3, 2023 8 / 21

Parallel data I/O patterns

0 AddNoise
[0] 0 0 Digitizer

[0] 0 0 FrameFanout
[orig0]

0

1

0 AddNoise
[1] 0 0 Digitizer

[1] 0

0 FrameFanout
[orig1]

0

1

0 AddNoise
[2] 0 0 Digitizer

[2] 0 0 FrameFanout
[orig2]

0

1

0 AddNoise
[3] 0

0 Digitizer
[3] 0 0 FrameFanout

[orig3]
0

1

0 AddNoise
[4] 0 0 Digitizer

[4] 0

0 FrameFanout
[orig4]

0

1

0 AddNoise
[5] 0

0 Digitizer
[5] 0 0 FrameFanout

[orig5]
0

1

0 BlobClustering
[0] 0 0 BlobGrouping

[0] 0 0 BlobSolving
[0] 0

0 BlobClustering
[1] 0 0 BlobGrouping

[1] 0 0 BlobSolving
[1] 0

0 BlobClustering
[2] 0 0 BlobGrouping

[2] 0 0 BlobSolving
[2] 0

0 BlobClustering
[3] 0 0 BlobGrouping

[3] 0 0 BlobSolving
[3] 0

0 BlobClustering
[4] 0 0 BlobGrouping

[4] 0 0 BlobSolving
[4] 0

0 BlobClustering
[5] 0 0 BlobGrouping

[5] 0 0 BlobSolving
[5] 0

0 ClusterFileSink
[img0]

0 ClusterFileSink
[img1]

0 ClusterFileSink
[img2]

0 ClusterFileSink
[img3]

0 ClusterFileSink
[img4]

0 ClusterFileSink
[img5]

0

1
BlobSetSync

[0] 0

0

1
BlobSetSync

[1] 0

0

1
BlobSetSync

[2] 0

0

1
BlobSetSync

[3] 0

0

1
BlobSetSync

[4] 0

0

1
BlobSetSync

[5] 0

0 DepoSetDrifter
(unnamed) 0 0 DepoSetFanout

[fanout]

0

1

2

3

4

5

0 DepoTransform
[0] 0

0 DepoTransform
[1] 0

0 DepoTransform
[2] 0

0 DepoTransform
[3] 0

0 DepoTransform
[4] 0

0 DepoTransform
[5] 0

0 Reframer
[0] 0

0 Reframer
[1] 0

0 Reframer
[2] 0

0 Reframer
[3] 0

0 Reframer
[4] 0

0 Reframer
[5] 0

0 FrameFileSink
[orig0]

0 OmnibusNoiseFilter
[0] 0

0 FrameFileSink
[orig1]

0 OmnibusNoiseFilter
[1] 0

0 FrameFileSink
[orig2]

0 OmnibusNoiseFilter
[2] 0

0 FrameFileSink
[orig3]

0 OmnibusNoiseFilter
[3] 0

0 FrameFileSink
[orig4]

0 OmnibusNoiseFilter
[4] 0

0 FrameFileSink
[orig5]

0 OmnibusNoiseFilter
[5] 0

0 FrameFanout
[gauss0]

0

1 0 FrameFileSink
[gauss0]

0 SumSlices
[0] 0 0 SliceFanout

[0]
0

1

0 FrameFanout
[gauss1]

0

1

0 FrameFileSink
[gauss1]

0 SumSlices
[1] 0 0 SliceFanout

[1]
0

1

0 FrameFanout
[gauss2]

0

1

0 FrameFileSink
[gauss2]

0 SumSlices
[2] 0 0 SliceFanout

[2]
0

1

0 FrameFanout
[gauss3]

0

1

0 FrameFileSink
[gauss3]

0 SumSlices
[3] 0 0 SliceFanout

[3]
0

1

0 FrameFanout
[gauss4]

0

1

0 FrameFileSink
[gauss4]

0 SumSlices
[4] 0 0 SliceFanout

[4]
0

1

0 FrameFanout
[gauss5]

0

1

0 FrameFileSink
[gauss5]

0 SumSlices
[5] 0 0 SliceFanout

[5]
0

1

0 OmnibusSigProc
[0] 0

0 OmnibusSigProc
[1] 0

0 OmnibusSigProc
[2] 0

0 OmnibusSigProc
[3] 0

0 OmnibusSigProc
[4] 0

0 OmnibusSigProc
[5] 0

0 GridTiling
[0-f0] 0

0 GridTiling
[0-f1] 0

0 GridTiling
[1-f0] 0

0 GridTiling
[1-f1] 0

0 GridTiling
[2-f0] 0

0 GridTiling
[2-f1] 0

0 GridTiling
[3-f0] 0

0 GridTiling
[3-f1] 0

0 GridTiling
[4-f0] 0

0 GridTiling
[4-f1] 0

0 GridTiling
[5-f0] 0

0 GridTiling
[5-f1] 0

NumpyDepoSetLoader
[depos] 0

Example of nodes providing parallel �le I/O.

Input: multiple input (here just one) may asynchronously fan-in to implement
an event mixing pattern.
Taps: any graph edge may be “broken” to insert a tap pattern allowing
pass-through and consumption of data.
Output: pipelines may indivdually terminate in a sink, eg producing per-APA
�les here.

Brett Viren WCT MT March 3, 2023 9 / 21

Wire-Cell Toolkit usage context

Data products
(DAQ, art::Event,
WCT data, files)

art / LArSoft
native modules

Wire-Cell Toolkit

art module+tool
or

standalone CLI

DAQ
TPC ADC

waveforms

TPC response
simulation

TPC signal
processingTPC signals

3D reconstruction

GaussHits

Ionization
depositions

3D WC clusters

Track/flash matching
pattern/track recon...

Geant4

GaussHit finder

Pandora and
other reco...

Consumers: shared? shared LArSoft Wire-Cell
Brett Viren WCT MT March 3, 2023 10 / 21

Command line WCT

$ wire-cell --help
$ wire-cell -t 16 -l my-job.log -L debug \

-A detector=uboone -c my-job.jsonnet

The CLI lifetime:
set number of threads, con�gure logging streams,
injects command-line options to and compiles and interprets the con�guration,
loads plugin libraries, instantiates named objects, applies their con�guration,
executes one or more special “app” objects (eg the graph execution engine).

Beyond that, the CLI is totally “policy free” with no preconceived data nor execution
models and the entire behavior is fully determined by con�guration.

Brett Viren WCT MT March 3, 2023 11 / 21

Integration of WCT with art and LArSoft

Integration code lives in larwirecell under the larsoft umbrella, depending on wirecell.

WCLS, an art tool, calls the main WCT CLI
object with info from FHiCL.
WireCellToolkit, provides a minimal
art module using a WCLS tool.
IArtEventVisitor provides one part
of a multi-interface WCT component.
Various WC/LS implementations are
included which adapt data products and
services.

Brett Viren WCT MT March 3, 2023 12 / 21

Strategy for large-scale simulation

In the past we output WCT sim ADC waveforms to art::Event as RawDigit’s.
But:

Monolithic ADC data products are not feasible beyond ProtoDUNE scale (also not required!).

The only(?) consumer of ADC in production simulation is WCT signal processing.

Elements of solution:

Combine WCT sim + sigproc in one graph, ADC’s become transient inside WCT.

Apply WCT sim + sigproc “sparse mode”, process only “interesting” APAs.

But, there are special cases needing simulated ADCs:

Access full statistics? Run as WCT component during production processing.

Small statistics? Run as special job in high-memory, output ADCs to art::Event.

People should understand if there are show stoppers here!

Brett Viren WCT MT March 3, 2023 13 / 21

Strategy for signal processing

For sim, combine as just described.
But for real detector data:

Expect dense, per-APA ADC �les from DAQ.
Single-APA �les: no transverse parallelism.
Using art for input: no longitudinal parallelism.

I WCT must perform the input bene�t over-allocated cores.

Use art + LArSoft for output to bene�t from provenance features.

Brett Viren WCT MT March 3, 2023 14 / 21

Strategy for merging/mixing

WCT supports asynchronous branch and merge pattern.
Each branch/merge node type is developed custom to perform some task driven by data.
A merge can be fed by parallel �le inputs. (merge all fragments from common trigger).
A branch can feed parallel �le outputs. (send fragment i to output stream file_$i.tar.gz)

Merging across APA’s not required at ADC nor signal data tiers but perhaps
needed at GaussHits and WCT 3D cluster data tiers (or soon after).

These data tiers are vastly smaller than TPC ADC and so whole-detector merge will not su�er
prohibitive memory overhead in making a monolithic output.

Brett Viren WCT MT March 3, 2023 15 / 21

Strategy for GPU acceleration

sim Kokkos/GPU version of WCT sim for 18× speedup (≈ 1 sec / APA)
Haiwang Yu, HEP-CCE/PPS

sigproc DNNROI AI/ML inference, FFTs.
Most still CPU-only. Porting to GPU, possible but challenging.
Promising R&D: replace parts with AI/ML inference on GPU.

Numerology: sim/sigproc needs ≈ 100 CPU cores to feed 1 GPU at ≈ 100%.
HPC has 4-8 GPU / compute-unit (box), 50-100 CPU core.

I Need much more CPU→ GPU porting to fully utilize this GPU density.
GRID has 0-1 GPU / box, 10-20 CPU core.

I Simply live with ≈ 10% GPU utilization?
I WCT/ZIO/ZeroMQ GPU-as-service to share one GPU across ≈ 10 boxes.

Brett Viren WCT MT March 3, 2023 16 / 21

Summary

Wire-Cell Toolkit:
executes many ST-coded nodes in parallel across a MT’ed data �ow graph.
can run stand-alone or as a part of art + LArSoft.
has GPU acceleration today, opportunities for more and methods to adapt to a
range of GPU/CPU ratios.
can �exibly adapt to di�erent hardware resource limitations.
provides parallel I/O patterns to mitigate memory overheads, avoid data
monoliths and provide a number of useful functional features.

Brett Viren WCT MT March 3, 2023 17 / 21

FIN

Brett Viren WCT MT March 3, 2023 18 / 21

Brett Viren WCT MT March 3, 2023 19 / 21

Prompt signal processing:

Want to run signal processing on raw data while it resides on tape input bu�er disk.
Save money and time to avoid full read-back ADC from tape.
Signals are the input to “everything”, are smaller and can reside on disk for frequent re-reading.
Enables ad-hoc prompt data access, release testing, calibration, quality monitoring.

Brett Viren WCT MT March 3, 2023 20 / 21

Strategy for prompt supernova neutrino burst pointing

Locate source of SNB, promptly tell astro, better point telescopes.
Ideas exist to use DAQ Trigger Primitives and raw ADC

I All are limited in accuracy and precision due to bipolar nature of induction and
we must use signal processing to achieve best results.

I 10 minutes still useful/achievable but Super-Kamiokande already beats this.

Run sigproc on shared or dedicated HPC with CPU+GPU.
I DUNE DAQ sends SNEWS input message also to service on HPC.
I HPC launches large job Nthreads ≈ O(10k) over many processes.
I DUNE DAQ streams sparse TPC data continuing activity directly to service on

HPC. Must have priority over the ≈ 10 hour egress of full SNB data.
I Promptly stream results to SNEWS 2.0

BNL proposed this as part of a recent SciDAC. Proposal was complimented but
declined. Now up to DUNE / future funding if we want to contribute in this manner.

Brett Viren WCT MT March 3, 2023 21 / 21

