
Multi-Threading and
Acceleration in
Wire-Cell Toolkit

Haiwang Yu (BNL) for the Wire-Cell Team
2023-03-03

LArSoft Multi-threading and Acceleration Workshop

Multi-Threading and Acceleration in Wire-Cell Toolkit

2

Goal: to balance computing resources

Techniques in Wire-Cell Toolkit (WCT)
• Task level multi-threading – CPU/Memory

• targeting Sim+SigProc
• real benefit?
• research → production

• Portable parallelization – if we have GPU
• PyTorch – ML/GPU
• ZIO: zero-MQ based distributed computing framework – between nodes
• IDFT – targeting one alg.

wire-cell-toolkit and larwirecell

3

wire-cell-toolkit (wct): https://github.com/WireCell/wire-cell-toolkit
configurations:
• centric: cfg in the wct repo
• experiment: e.g., https://github.com/DUNE/dunereco/tree/develop/dunereco/DUNEWireCell

larwirecell: https://github.com/LArSoft/larwirecell
• Links LArSoft and wct
• If run the example above in LArSoft:

• DepoFileSource → SimDepoSetSource:IArtEventVisitor
• add FrameSaver:public IArtEventVisitor after ‘FrameFanin’

FrameSaver

SimDepoSetSource

https://github.com/WireCell/wire-cell-toolkit
https://github.com/DUNE/dunereco/tree/develop/dunereco/DUNEWireCell
https://github.com/LArSoft/larwirecell

Use TBB engine for WCT jobs

4

in jsonnet
wire-cell -t 4 -c wct.jsonnet ...

in fhicl
lar -j 4 -c wcls.fcl ...
no Legacy services

Task for benchmarking

5

3 7 11 15 19 23

3

2

2

1 5

1 5

0:0 4:0 8 12 16 20

0:1 4:1

...

Processed CRUs

Read depo

Drifter

Signal Det. Resp.
Simulation

Noise Sim. Sig. Proc.

Simulation + Signal Processing for DUNE-FD2-VD
• input: energy depos from genie + G4 using LArSoft v09_65_02d00
• both Sim and SigProc handles dense data
• and are major time-consumers in many production campaigns
• no communications needed cross CRUs/APAs

Sample SigProc result

6

Only 1 CRU in the 0th event got a neutrino
interaction

Most of the time the workflow simulates noise
and performs SigProc

lar vs. wct

7

Tested on dunegpvm09 with 4 cores and 10GB
memory? No other active users at testing time.
• my local machine is not setup to run the latest

LArSoft currently

To demonstrate WCT MT can be used in production

CPU:
• speed up for core: 4.1 (lar, fluctuation?)
• seems lar has a bit more overhead and is a bit

slower but hard to say with fluctuations (similar
results running twice)

Memory:
• MT uses more and is peakier.
• wct uses a bit less memory
• 0.92 → 0.54 GB (per core)

core

8

core speed up: 2.8 (dynamic CPU frequency scaling?)
per core mem: 3.8 -> 1

• longer ST section to initiate the wire geom.
• real benefit if

• MT portion of a job is large
• Shared memory between threads is large

1, job init e.g., compiling jsonnet
2, load wire geom
3, computing
4, job finalization

1 2 3 4

2x8x40-4apa (full 10kt) mt4 vs. st

Portable Parallelization

9

M. Lin etc, ACAT2022

Example: Kokkos

10

Wire-Cell Simulation Major Steps

11

Three major steps of LArTPC simulation with Wire-Cell - a representative
workflow

1. Rasterization: depositions ⟶ patches (small 2D array, ~20×20)
○ # depo ~100k for cosmic ray event

2. Scatter adding: patches ⟶ grid (large 2D array, ~10k×10k)
3. FFT: convolution with detector response

rasterization and scatter adding

Convolution theorem:
convolution in time/space domain

multiplication in frequency domain

Initial CUDA porting

12

First CUDA porting focused on the Rasterization step:
● 3× speedup for the Rast. step

○ parallelization at single patch level
○ RNG factored out ⟶ random number pool

● simulation results statistically consistent with CPU version

Intel i9-9900K, NVIDIA RTX 2080Ti

Kokkos Porting

13

Two stage porting strategy
1. partial porting - port only step 1, rasterization
2. full porting

a. more workloads for parallelization
b. batched device-host data transfer

stage 1

stage 2

wire-cell-gen-kokkos

14

[1] Z. Dong, K. Knoepfel, M. Lin, B. Viren, H. Yu and K. Yu, vCHEP 2021, arXiv: 2104.08265
[2] Z. Dong, K. Knoepfel, M. Lin, B. Viren, H. Yu and K. Yu, ACAT 2021 poster, arXiv:2203.02479

Next for WCT-PPS

15

• More validation of the Kokkos wct-gen porting results

• Port wct-sigproc to Kokkos
• deconvolution – easier to port
• ROI finding

• traditional – heuristic logics – harder to port
• DNN – handled by ML backends – validation needed

PyTorch: AI/ML and more

16

LarSoft Simulation

Energy Depos

WireCell Response
Add Noise

Raw waveform

WireCell
preprocessing for DNN

DNN Input
hdf5

Truth Tags
hdf5

WireCell
Truth Tagging

Model Training/Testing
with Python API TorchScrip Model in File

Raw waveform

WireCell
preprocessing for DNN

DNN Input
in memory

DNN ROI Finding
GPU/CPU

ROI

Training workflow

DNN in production

WCT has a package uses PyTorch C++ API
• Can leverage ML models and the tensor operations from

PyTorch impl.
• Can use GPU if the backend libtorch supports

• GPU support in UPS system?

Distributed computing with ZIO

17

https://brettviren.github.io/zio/whytos.html

Example running PyTorch model inferencing
Host resource uses:

• running with lar
• chain: frame ⟶ nf ⟶ sp ⟶ dnn-roi ⟶ frame
• tcp protocol
• worker(idle): 2.8 GB RAM, 1.6GB VRAM

ZeroMQ based distributed computing
framework by B. Viren

Can further balance computing resources
between nodes

Mechanically working tested in an DNN
inferencing task

https://brettviren.github.io/zio/whytos.html

IDFT: interface for multiple FFT impl.

18

FftwDFT

cuFftDFT

• IDFT: easy to swap FFT implementations.
• Data copying between CPU/GPU needed
• Using IDFT alone seems not the optimal way to speed things up

• useful add-on when having idling GPU cycles
• Still under development

Summary

19

Wire-Cell Toolkit Multi-Threading and Acceleration:
• Production ready: MT, PyTorch
• Need more work: Kokkos, IDFT, ZIO

Metrics for acceleration?
• Throughput per time – traditional productions

• related to resource availability
• Absolute speed - prompt processing

• e.g., supernova neutrino burst pointing

20

backups

Variations in the configuration

21

what to compare

executable lar
(WCT as plugin of LArSoft)

wct
(Wire-Cell Toolkit)

detector 1x8x6-*apa 2x8x40-*apa
(full 10kt)

wct engine pgr
(Pgrapher) tbb

thread st mt*

event x*

cfg nofanin mag/frametap
(I/O related)

1x8x6 vs. 2x8x40

22

1x8x6-4apa mt4 vs. st

23

core speed up: 3
per core mem: 0.6 -> 0.43

extra threads

24

reproducible with a second run

fanin vs. nofanin

25

tbb vs. pgr st

26

