
Tom Junk
LArSoft Multithreading/Acceleration Workshop
March 3, 2023

DUNE Data Serialization/Low-Level
Processing and Production

• Improved throughput
• Better utilization of CPU and accelerator resources
• Current OSG nodes have ~2 GB RAM/CPU

– Our usage is accounted in CPU hours but it's really GB hours since
we run 6 GB/job (PDSP reco) mostly single-threaded.

• Our processing is embarrassingly parallel (event level for sure, and parts
of events too are independent).

• Goal is to reduce memory usage per CPU. Multithreading addresses part
of this.

• Multithreading would let us share "fixed" memory: code, geometry,
service caches

• Loading up ROOT libraries and JIT compiler takes ~500 MB all by itself
• Rest of this talk is about per-event memory usage and how to best spread

it out.
• If data size dominates, iterating over it is a natural solution. SNB data will

have to be iterated over anyway.

Goals of Multithreading/Acceleration

3/3/23 Tom Junk | DUNE Data Serialization2

A raw FD normal trigger record for one horizontal-drift module
has size 6000 ticks * 14 bits * 150 APAs * 2560 channels:
4.0 GB.

Possibly fewer ticks per trigger record. 4500 ticks covers the
drift time at full volts. 3.0 GB

ProtoDUNE-SP needed a longer readout window to cover the
copious out-of-time cosmic rays (not to mention the 1 ms AC
coupling time constant of the electronics)

“Protocol overhead” was ~20% for ProtoDUNE-SP. WIB frame
headers, extra data to cover the 6000-tick windows that would
be trimmed to size offline (feature of the RCE 1024-tick blocks)

Data Sizes -- TPC

3/3/23 Tom Junk | DUNE Data Serialization3

• ProtoDUNE-SP data sizes: 6 APAs x 6000 ticks x 12 bits x
2560 channels = 138 MBytes (without "protocol overhead”)

• Compression achieved: Factor of ~4
– RCEs performed compression before data sent to artdaq

boardreader.
• Needed for throughput – network was the bottleneck
• Required significant expert development
• Some fragility when nticks ended up being nonstandard for some

channels
– FELIX compression performed with Intel Quick-Assist

Technology cards (I think.. could have been done also in
software).

– Compression was custom – not ROOT based. Best to turn off
ROOT compression if data are already compressed.

• DUNE FD data will not be compressed, as far as I know.

Data Sizes: ProtoDUNE-SP TPC

3/3/23 Tom Junk | DUNE Data Serialization4

• One FD-HD SNB Trigger: 100 sec * 2M samples/sec * 14 bits * 150 APAs
* 2560 channels = 134 TBytes/module

• Just under 1 TByte/APA. Try to keep protocol overhead low for this, but
WIB frame headers will be needed.

• Compression not planned for DAQ. 100 seconds isn't enough time to
compress 134 TBytes on the fly.

• Transfer time to FNAL: 4+ hours (10?). Plenty of time to compress data
while it is waiting to stream over the network.

• Normal trigger records come once per 20 seconds. Plenty of time to
compress those, too.

• Copying to dCache and enstore, as well as analysis readback will benefit
from compression of data

• Lossless compression factors depend on noise and gain. We can always
choose to write noisy bits...

Data Size: Far Detector SNB Trigger Records

3/3/23 Tom Junk | DUNE Data Serialization5

• recob::Wire – has ROI features built into it.
• recob::Hit, clusters, tracks, showers, etc – all small
• Reconstruction data products scale with interaction size and

not detector size
• Cosmic-ray air showers and high-energy showers will make

big tails on these.

Processed Data

3/3/23 Tom Junk | DUNE Data Serialization6

• Photon-detector data: Much smaller than the TPC data
– 10 PDS channels per APA vs 2560 wires.
– Data are collected in snippets, already zero-suppressed.

Single-PE signals are above threshold so there is no point in
not zero-supressing them.

– With the TPC, single electrons induce very small signals and
induction-plane signals involve long-range effects and
cancellation, so there is no lower bound of useful signals
strengths, hence the desire not to zero-suppress the TPC data.

– PDS snippet data scales with interaction size, not detector size
– most of the detector is empty on nearly all events.

• Trigger primitives, CRT (ProtoDUNE has one), beam
instrumentation are all small data loads

Non-TPC Data

3/3/23 Tom Junk | DUNE Data Serialization7

• ProtoDUNE-SP had a lot of space used by
– MCParticles – contain trajectory information – optimizable

• EM shower daughters
• Trajectory density

– Sim::EnergyDeposits
– Sim::SimChannels

• All of these scale with interaction size and not detector size
– FD MC should mostly be much smaller than ProtoDUNE-SP for

these data products
– Some tiny number of interesting cosmic-ray air showers or

single high-energy cosmic rays showering in the detector can
create a long tail on the size here.

Monte Carlo Specific Data Products

3/3/23 Tom Junk | DUNE Data Serialization8

Near Detector Annual Volumes and Spill Sizes

3/3/23 Tom Junk | DUNE Data Serialization9

Data/spill assumes 1.5 x 107 spills/year

Volume/spill

9.6 MB

3.4 MB

2.6 MB

~300 sec
CPU/spill

TMS:
Small
data size

• TPC data naturally divide into APAs.
• Usually, it doesn't make sense to divide data any finer

(FEMBs? Not really).
• SNB data also need to be divided by time. ~200 µs extra on

the ends is required for deconvolution.

• "All other data" – PDS, trigger etc can be handled together
unless it is a problem. SNB PDS data can be divided in time
but not as convenient for per-APA.

• SNB low-level processing job – does it need both TPC and
PDS data? Hopefully we can factorize that. Divide jobs up
by APA may need duplication of PDS data then...

Natural Granularity

3/3/23 Tom Junk | DUNE Data Serialization10

• Prefer these applications to be lightweight –
– start up quickly at the beginning of a run
– low latency is a big plus

• Not all data need to be processed.
• ProtoDUNE-SP online monitor was custom software, DQM

was running LArSoft. Some code was shared but not much
(dune_raw_data)

• DQM can have longer latency than Online Monitor

Use Cases: Online Monitoring and DQM

3/3/23 Tom Junk | DUNE Data Serialization11

• Critical for understanding detector/electronics features
• Need ability to plot waveforms and 2D tick vs wire data
• Also useful for hand-scanning events.
• Deconvolved event display can mask issues with the data
• Random access to any APA's worth of data is required – need

large-RAM machines to host the EVD?
• Random-access EVD does not have to run on a batch worker,

though. Interactive vs. web server?
running the raw EVD on the same computer as the display was
much more comfortable than over a network.

• Online monitor/control room EVD needs this.
• Batch-mode EVDs can be made serially (dataprep makes these

now).
• We do not need it for every trigger record, but we need it for any

trigger record. Need it also for a sample of MC.

Use Case: Raw Digit Event Display

3/3/23 Tom Junk | DUNE Data Serialization12

• Unpacking
• Channel Map
• Trigger primitive/activity/candidate recalculation
• ADC mitigation
• Correlated Noise Removal

– Currently by FEMB and plane, but some noise sources don't
respect these boundaries

• Frequency-based Noise Filtering, which is part of:
• 2D Deconvolution
• recob::Wire, recob::Hit, 3D charge image outputs
• Optional plots/visualization of output of each step

Use Case: Front-End Data Processing

3/3/23 Tom Junk | DUNE Data Serialization13

• Work already done to reduce memory consumption through dataprep
– Delayed reader – both for ROOT and HDF5 data. Don't read the

whole TPC data in for a trigger record, just one APA at a time
– Do not put raw::RawDigits into the art event – keep them in temporary

storage and delete them when done.
– art has a RemoveCachedProduct method but it throws an exception if

you try to remove a produced product. Just products from files can be
removed. raw::RawDigits are produced because raw data are not in
raw::RawDigit format but in DAQ formats.

– Trigger record consistency check – do all FEMBs read out the same
number of ticks? Requires some inter-thread communication.

• Memory bottleneck – transferring recob::Wire to WireCellToolkit from
DataPrep. Mentioned by Brett and Haiwang.

Front-End Data Processing

3/3/23 Tom Junk | DUNE Data Serialization14

ProtoDUNE-SP Data Reco Processing Times

3/3/23 Tom Junk | DUNE Data Serialization15

The Biggies:

EmTrackMichelID
(a CNN inference step,
this run was CPU-based)

DataPrep (incl. file i/o
and unpacking/
decompression)

WireCellToolkit

DataPrep and WireCellToolkit
scale with detector size,
not interaction complexity
(x25 for a FD module)
15 sec of DataPrep was
disk I/O, decompression, reformatting DUNE Software and Computing CDR

• In ProtoDUNE-SP and ICEBERG, some data were taken with
very long readout windows.

• 30-second ICEBERG data. 1280 channels @ 2 MHz. No
event builder, however, so files were divided up by electronics
boundaries and we had to read several in at a time.

• ProtoDUNE-SP data – just two FEMBs read out by FELIX for
of order 1 second.

• Purpose was to study very low-frequency noise.
• Bespoke workflows needed for these. Not going to run

regular reco on them but that's not the point.
• ICEBERG data may be practice for SNB readout. 128 GB of

data in 30 seconds

Use Case: Very long readout window & Calib data

3/3/23 Tom Junk | DUNE Data Serialization16

• Detsim Stage1 takes 1169 seconds per ProtoDUNE-SP event running
WireCell's raw digit simulation – a lot of random numbers thrown for noise
simulation. Good opportunity for multithreading/acceleration!

• DUNE does not need raw digits persisted for most FD MC
• Strategies:

– Drop the raw digits as early as possible
– Use smaller geometries
– Zero suppress the MC

BUT:
• Firmware developers have expressed interest in DAQ-formatted MC – full

geometry, no ZS.
• Would like "eager writing" – flush raw::RawDigits to output file and free up

memory
• This needs to be incorporated into the WireCellToolkit's output methods.

Use Cases: Monte Carlo

3/3/23 Tom Junk | DUNE Data Serialization17

• Standard art analyzer modules – read raw::RawDigits from
the event memory, write HDF5 files

• Uses pre-Nov. 2022 HDF5 file format (and data format)
• fdhddaqwriteexample_nozs.fcl runs a simulation with a

particle gun, drops raw::RawDigits from the artROOT file (so
as not to hit the 1 GB limit), and writes an HDF5 file with
simulated WIB frames.

• hdcolbox_hdf5daqwrite.fcl – the same, but for the HD coldbox

• Need channel maps to look up hardware locations (crate,
slot, fiber, chan) from offline channel numbers. PD-HD map
evolved a bit as firmware was developed, and FD-HD map is
a bit of a guess at the moment. But there is one!

Existing Tools – MC DAQ-format writers

3/3/23 Tom Junk | DUNE Data Serialization18

• Attempting to write more than 1 GB to a TBranch on one
entry results in ROOT throwing an exception.

• I am told this limit can be adjusted at compile time
– We would have to enforce usage of special DUNE-compiled

versions of ROOT in order to process raw digits in this way
• There does not appear to be a limit on TTree entry sizes, just

TBranch entry sizes.

ROOT's 1 GB limit

3/3/23 Tom Junk | DUNE Data Serialization19

• Toy data: five 900 MB blocks of random bits (designed not to compress
well)

• Write each block as a vector of ULong64_t's in a TBranch and call
TTree::Fill() to write the output file. Usual way to run ROOT.

• Default ROOT settings: high-water mark of memory usage: 14 GB
– 4.5 GB for user-space memory
– ROOT output buffer
– ROOT compression

• Use TBranch::Fill() instead of TTree::Fill() and de-allocate user-space
memory after it is done ("eager writing"): 9 GB memory usage

• Turn off ROOT's compression: 4.4 GB memory usage (similar to output
file size).

Memory Consumption Writing 4.5 GB to a Single
TTree Entry

3/3/23 Tom Junk | DUNE Data Serialization20

• Art assumes a relationship between these
• We can write our own input source that forms art events
• ND-LAr's Module-0 data already does not have a concept of

a trigger – just a big conveyer belt of ata.
• Module-0 input source and Python workflows have to define

what an "event" is.

• DUNE-DAQ has added a "sequence ID"
– always zero so far
– Intended for SNB data where one trigger has one

Run::Subrun::Event and many sequence IDs.

Breaking the Relationship Between ROOT TTree
Entry number and Run:Subrun:Event ID

3/3/23 Tom Junk | DUNE Data Serialization21

FD-VD Data and CPU Needs from Computing CDR

3/3/23 Tom Junk | DUNE Data Serialization22

"Hit finding"
Includes
signal
processing

HDF5 vs. ROOT

Jan 25, 2023 Tom Junk | Data Formats and Serialization 23

ROOT HDF5

Automatic Serialization of
C++ class data

Yes No (flat arrays). Custom
structs possible but you
have do do it yourself.

Support for schema
evolution of data
products

Yes No

Hierarchical grouping of
data

Yes Yes

Tools for adding Metadata Yes Yes

No-Code dumpable Yes Yes

No-Code browsable Yes Yes

No-Code statistical
analysis

Yes (TBrowser,
TTree:Draw())

No (There are browsers,
but they assume data
formats)

Improperly closed files
readable

No No (?)

HDF5 vs. ROOT

Jan 25, 2023 Tom Junk | Data Formats and Serialization 24

ROOT HDF5

Streamable via XRootD Yes/Static* Interface Yes/Dynamic* Interface

Automatic Compression Yes Yes

Multiple buffering of data
on input/output

Rather heavyweight Seems to be more
lightweight

Jagged Arrays Yes Yes, but some
functionality doesn’t
work for them

Data Selection Tools Yes, by entry, scriptable Yes, by dataset/shaped
clipping of datasets

Community Support HEP. Some use outside of
HEP (Finance?)

Scientific community,
seems to have large
support in image-
processing fields

• As far as I can tell, compiling HDF5 as thread-safe adds a
global mutex on methods that access common data
structures and I/O

• Often, we are limited by disk I/O anyway, so this is not an
additional burden on grid nodes.

• New HDF5 features – subfile for example, may allow this not
to be a bottleneck on striped RAID systems.

• We use ROOT I/O in a single-theaded way – accumulate,
compress and flush. Flushing TBranches works but I do not
know if it bottlenecks if you do a lot of them in parallel, even if
the disks can handle it.

Multithreading and HDF5

3/3/23 Tom Junk | DUNE Data Serialization25

• ROOT natively supports XRootD I/O automatically
– detects XRootD URLs and sends I/O operations to XRootD

static interface methods
• HDF5 does not natively support XRootD I/O, but the XRootD

Posix library has a dynamic interface
– LD_PRELOAD can be set to point to the XRootD Posix I/O

library which intercepts fopen, fread, fwrite, etc.
– Shown to work with art jobs and h5dump-shared. Streaming

works!

Streaming Data with XRootD

3/3/23 Tom Junk | DUNE Data Serialization26

• If we want to write out an HDF5 file and a ROOT file from a
MC job, we want to keep these together

• I have a ROOT macro that adds a TTree with one branch with
one leaf with one byte that can ingest any arbitrary file one
byte at a time and store it in the ROOT file.

• And a macro that reconstitutes all such packed files.
• Not hard to write something similar that adds a big blob of

data in an HDF5 dataset.

• Somewhat inconvenient – requires a pre-job program to run
to split the input file apart.

• If you want to add raw digits to a ROOTfile from MC, no real
benefit to using HDF5.

Embedding HDF5 files in ROOT files and vice versa

3/3/23 Tom Junk | DUNE Data Serialization27

• Andrew Norman
• Barnali Chowdhury
• Jake Calcutt
• Paul Laycock
• Thomas Junk

New DUNE Memory Usage Task Force

3/3/23 Tom Junk | DUNE Data Serialization28

• Eager-Writer for WireCell to produce DAQ-formatted HDF5
output from WireCell MC

• Haiwang showed an example tarfile output from WireCell at
the January DUNE Collab meeting

• Break the wall between dataprep and WireCell so that it can
iterate over APAs. Or run them in parallel.

• Write an ICEBERG DAQ writer – mostly just need a new
channel map as the WIB firmware has changed.

• Read in Trigger primitives, Trigger Activities and Trigger
Candidate data from the HDF5 files.

• Simulate a SNB readout! Stretch our capabilities. Maybe
just 0.5 seconds worth however, and one FD module.

Some To-Do Items

3/3/23 Tom Junk | DUNE Data Serialization29

• Write a Virtual File Layer (VFL) plug-in for HDF5 that uses the
static XRootD interface like ROOT does. Or a Virtual Object
Connector (VOL). There is an example POSIX VFL plugin in
the HDF5 library one can use as an example.

• Investigate HPC optimizations for HDF5
– I'm guessing that if each job reads a separate file there is no

advantage over ROOT or other formats, but if many reads
overlap in time, we may need to look at how the data are laid
out and read in.

A Couple of HDF5 To-Do Items

3/3/23 Tom Junk | DUNE Data Serialization30

• Work has been invested in streaming data into jobs in small
pieces (smaller than a trigger record), necessary to keep the
memory usage down.

• Delayed readers are important. Allows longitudinal
parallelism in an art job but not using event store

• Not all steps of the DUNE workflow have been divided into
small pieces yet.

• Chunks can be processed serially or in parallel
• Data streaming at the file I/O level (XRootD) is necessary and

we will work to keep supporting/using it.
• Evolution of our data products, DAQ, the computing

environment and multithreading/acceleration means that
ongoing attention needs to be paid to data serialization and
readin.

Summary

3/3/23 Tom Junk | DUNE Data Serialization31

