Multi-processing for ND-LAr
In larnd-sim and ndlar flow

Matt Kramer, LBNL
(on behalf of P. Madigan, R. Soleti, and many others)

LArTPC multi-threading workshop, Mar 3, 2023

Outline 8-\

DUNE ND-LAr, ArgonCube, LArPix, and the prototypes
The larnd-sim simulation and its use of GPUs

The ndlar_flow calib/reco and its use of MPI (via h5flow)
Philosophical ramblings, mercifully brief

Matt Kramer LArTPC multi-threading workshop

Some quick remarks

* This is a fluffy talk, full of stolen material; | did not write larnd-sim or
ndlar_flow, nor have | had much past involvement in ND-LAr,
ArgonCube, or LArPix

- | also know very little about LArSoft (but do know Gaudi)

* But | work with those who do deserve the credit, and am broadly
interested in the use of HPC within HEP

* |'ve aimed for this talk to serve a few purposes:

- Share the multi-processing strategies used by larnd-sim and ndlar_flow
* They differ both from each other and from others discussed in this workshop
— Provide a general intro to the existing ND-LAr/2x2 software chain

- Promote the idea of a diverse, interoperable ecosystem of software and data,
so that creativity can flourish and we can learn from each other

Matt Kramer LArTPC multi-threading workshop 3

DUNE ND-LAr

* Liquid argon near detector:
Essential for the DUNE long-
baseline analysis

- Constrains flux, xsec, detector
systematics

— Same target as far detectors

* Pileup in high-rate environment
— Traditional wire readout unfeasible
* ND-LAr: A 7x5 array of optically

segmented ArgonCube modules
with pixel readout

Matt Kramer LArTPC multi-threading workshop 4

ArgonCube

ol <hel * Amodular LArTPC for combined
deployment in arbitrarily large,
segmented detectors

Cathode
\ | » Central cathode: 2 drift regions
* Pixelated charge readout using
novel LArPix ASIC
l r - Flat-panel light detectors coupled to
f

SiPMs; 2 alternating designs

— ArcLight: Continuous dichroic film
- LCM: Winding fibers

"5

Charge Lightr/o
r/o plane planes

Matt Kramer LArTPC multi-threading workshop 5

ProtoDUNE-ND and the 2x2 DUVE

%“%;%D%JXTE%? » ProtoDUNE-ND: Full-
\ cupnre featured, scaled-down
ArgonCube prototype

2x2 demonstrator — Successful demonstration
of technology

1.40m

* 4 modules to be deployed
In 2x2 demonstrator in
NuMI beam @ FNAL

- Tested @ LHEP in Bern

— Commissioning @ FNAL,;
neutrino beam this year!

Full scale
ND-LAr module
Ix1x3 m?3

Matt Kramer LArTPC multi-threading workshop 6

Charge readout: LArPix DU(VE

* Novel ASIC for pixelated charge
readout

- Cold amplifiers, ADCs, 10

» Self-triggering pixels; continous
stream of hits

* Flexible “hydra” network for 10
routing

* Driven and read out by
“Pacman” board;
- Pacman communicates to DAQ
machine via ZeroMQ/ethernet
- DAQ — “raw” HDF5 files

* For further analysis, convert to
“packet” HDF5 (same as produced
by larnd-sim)

Tile front: pixel pads

8 (16) tiles per ProtoDUNE-ND TPC (Module)

LArPix pixelated anode

Carben-loaded Kapton
field cage sheet

Cathode

LCM tile

ArCLight tile

Matt Kramer

LArTPC multi-threading workshop 7

Light readout; ADC64 (Ve

| r_;s = * Independent DAQ from LArPix
=
#oc || aoc || aoe | | ac. * 6 SiPMs per light tile
R R - 8 (16) tiles per ProtoDUNE-ND TPC (module)
. * 1 (1) ADC64 for all 8 ArcLight (LCM) tiles in a module
N o) 10C o - 8*6 = 48 active channels per ADC (out of 64)
a = F - Add’l ADC takes tile-sum signals for triggering (16
16TEP.|2::B 16TEP-IC='203 TRIG LOGIC chan nels)
— S ousvor |1 FHlmem | me | o DAQ — triggered waveforms in binary ADC64 format
-l el 0 - Converted on-the-fly to HDF5 in ndlar_flow
— - 16 5um signse E ArCLight tile LCM tile
é" §ll’ %
l VGAs | I‘VGAs o
% 5 % E WR SVEC
ADC | | ADC || ADC | | ADC <
[|n k3 I_E:BD‘:J"'_ : A wa e e Ve
1T 77 17 11V 11 17

6 SiPMs 2SiPMs 2 SiPMs 2 SiPMs

Matt Kramer LArTPC multi-threading workshop 8

2x2 software chain > '{\EE

ND-LAr Data Th|S talk
@ ND Common /
(@) simulation :
@ Calibration ND-LAr Detector +
@ Reconstruction Electronics NP-LA-r
+ |n progress Response Calibration
larnd-sim ndlar_flow
¥
g
g - I
g / i
Beam flux, generation and £/ &7 ;
Geant4 energy deposition K é?ob‘f/. :
g4numi, GENIE, edep-sim L ke ;
I . . .
/_\ g & 7Also discussed today
. u Q\ 7/
1, . P
% simulation Calibration reconstruction

MINERVA Data

Matt Kramer LArTPC multi-threading workshop 9

Array-oriented Python DRXVE

* Both larnd-sim and ndlar_flow are written in array-oriented
Python

— Vector operations (numpy, ...), not loops
* Avoids the performance penalty of looping in Python

* Makes automatic acceleration (numba, ...) more likely to succeed
(larnd_sim)

* Makes MPI-ification easy: Just slice (ndlar_flow / h5flow)
— Structs of arrays, not arrays of structs

* OK, fine, sometimes arrays of simple structs

* In any case, Plain Old Data -- no attached behavior (i.e. methods)
- Can use and interpret without specialized libraries

Matt Kramer LArTPC multi-threading workshop 10

HDF5 Du(VE

* Both larnd-sim and ndlar_flow use HDF5 almost everywhere

- Widely adopted, supported in many programming languages; small,
specialized library

* Compared to ROOT: Either install all of ROOT (great, but huge), or use
something like uproot (great, but incomplete)

- HDF5 datasets map well to Numpy arrays; good match for this
programming style

- Long-term data accessibility: Formally specified format, self-
describing files, readable with nothing but a generic HDF5 library

- To be fair, the official C++ APl is painful, but there’s e.g. HighFive
* The de facto Python interface (h5py) is nice, though

Matt Kramer LArTPC multi-threading workshop 11

https://github.com/BlueBrain/HighFive

|
* Completely written in Python * Input: edep-sim energy deposits in HDF5
* All heavy computations on GPU (~15 kernels) * Output: “Packet” data, as from DAQ); plus truth info
« Largely developed by 2 people e |diomatic Python, JIT-compiled to CUDA
- With pieces from many others; low barrier to - Just apply @numba.cuda.jit decorator
contributing - cupy: numpy on the GPU
edep-sim (Geant4 wrapper) L
Runs on CPU la rnd_s im
L, TTTEEEEEEEE T ! Runs on GPU
. e 1
Passage of particles 1! I
HDFS output file
bl : : . Light Photocurrent . | Optical detector ' in LArPix fF;rmat
1 : "| propagation simulation electronics :
+ | Recombination Scintillation light simulation : T
: '
' _ Drifting . | Induced current Pixelated readout :
: - electrons on pixel response 1
1 1
: lonization electrons simulation :
Matt Kramer LArTPC multi-threading workshop 12

larnd-sim design

¥

larnd-sim: Why GPUs?

* A massively parallelizable problem, over:

- Energy depositions: ionization,
recombination, diffusion, drifting, scintillation

- Photons: propagation, detection
- Pixels: induced current, electronics
response, digitization

* Nis high, elements are independent, and
calculations can be expressed with “just
math” and minimal branching

- GPU’s bread and butter

« HPC facilities increasingly providing
GPUs

- Follow the FLOPS

= =
9 <
N —

Processing time [s]
=
S

1074 4

W\ i 4

R ' ‘\ A
M) A
. /-—' | a-\‘.(\
A= 'ﬁk YA\
- A '\J _/’ _-*.\ A
C s ¢:‘ %
4?1\ !‘ i n('ANA \
Y; nf/;..' 4" ‘l ‘./. ﬁ'“"‘ “ u ‘ll
. ~ :l ‘. \ \
."1'

Light sum calculation

1 —— GPU - 100 channels === GPU - 1000 channels S
——— CPU - 100 channels ~== CPU - 1000 channels _-="~
10? 103 104 10°

Simulated time ticks

Matt Kramer LArTPC multi-threading workshop

13

larnd-sim: Some code

Calling a kernel
track_pixel_map = cupy.full((unique_pix.shape[@], detsim.MAX_TRACKS_PER_PIXEL), -1)

TPB = 32 # threads per block
BPG = max(ceil(unique_pix.shape[@] / TPB),1) # blocks per grid
detsim.get_track_pixel_map[BPG, TPB](track_pixel_map, unique_pix, neighboring_pixels)

@cuda. jit
def get_track_pixel map(track_pixel_map, unique_pix, pixels):
index = cuda.grid(1)
upix = unique_pix[index]
for itrk in range(pixels.shape[@]):
for ipix in range(pixels.shape[1]): .
o e Defining a kernel
if upix == pID:
imap = @
while (imap < track_pixel_map.shape[1l] and track_pixel map[index][imap] != -1
and track_pixel_map[index][imap] != itrk):
imap += 1
if imap < track_pixel_map.shape[1]:

track_pixel_map[index][imap] = itrk

Matt Kramer LArTPC multi-threading workshop

14

Processing time [s]

larnd-sim scaling

----- GPU - 0.05 ps
----- CPU - 0.05 ps

--- GPU-0.1yus
-—=- CPU-0.1ps

—— GPU-0.2 ps
—— CPU-0.2 ps

: 103 5
100_‘ —— CUDA kernel]
{ —— CPU compiled 5]
] = Sequential Python loop — 10 E
107 5 !
)
1072 4 =
]]
| 2
-3] =
1071 / ")
0
10744 ~—~ 9
-
o
10—5 .
10—3 4
10! 102 103 104 10°

Number of segments

10! 102 103
Number of pixels

Matt Kramer

LArTPC multi-threading workshop 15

larnd-sim deployment DRXVE

* For analysis of expected ~1yr
2x2-NuMl data, need ~10x sim
statistics: O(10% POT)

* Plan is to produce on NERSC
Perlmutter system (A100
GPUs, 4x/node)

 O(100k) GPU-node-hours

 Compare to the cost of
crunching all those numbers
on CPUs!

Matt Kramer

LArTPC multi-threading workshop 16

Flowing along: ndlar_flow

* ndlar_flow: Low-level

1. LArPix packets from Pacman DAQ

1 i 18

calibration and basic =

Map software channel to detector location
Subtract predetermined pedestals

i e 2
1.4.
LD
1.6.
17
1.8.

reconstruction of charge+light
data, real/simulated

- Light waveforms: denoising,
deconvolution, hit finding

— Charge hits: Pedestal
subtraction, ADC — charge —
energy, “undrifting” N

1000

y [mm]

400

- Event building, charge/light =
matching (t0) :

— Combined reco (tracklets)

-600

-400

ADC - ke calibration assuming uniform gain,
ke® - MeV calibration assuming fixed dx
Reconstruct drift coordinate

Correct ADC — ke for gain variations
ke~ — MeV calibration (refined)

Calibrate for detector distortion, electric field, etc.

600

400

200

0

-200

-400

-600
—-200 0
z [mm]

200 400 600

-600 -400

-200 0
x [mm]

200 400 600

Matt Kramer

LArTPC multi-threading workshop 17

ndlar_flow desig

n

¥

| Ny

h5flow

data manager
API

-
-
i custom MPl-compatible interface

hSpy wi MPI

Also pure Python, but runs on CPUs, not
GPUs

Performance from array ops, avoiding
loops

Built on h5flow framework:

Can be mentally mapped onto
<insert_framework here>, but much simpler

“Automatic” parallelism: Dataset slices
distributed via MPI

Flexible configuration via YAML files

Provenance tracking: Reference links are
stored between parent and child datasets

» Dereferencing possible in both directions, across
multiple links

Start with arrays of raw data; successively
add arrays of higher-level quantities

Matt Kramer

LArTPC multi-threading workshop 18

Closing thoughts (Ve

larnd_sim and ndlar_flow were largely developed by one grad student and
one postdoc, yet:

- They both contain an incredible amount of carefully validated physics

— They are inherently parallel and ready to take advantage of next-gen GPU (larnd-
sim) and CPU (ndlar_flow) facilities

How much of this can be credited to the flexibility and productivity offered by
Python, simple data formats, etc.?

How do we weigh those advantages against the complementary advantages
of a formalized C++ framework like LArSoft?

How do we balance coherence and consistency against creativity,
innovation, and readiness for new hardware architectures?

How do we get the best of both worlds? And if there are many worlds, how
do we ensure they can interoperate?

Matt Kramer LArTPC multi-threading workshop 19

Further reading (Ve

* larnd-sim paper:

Highly-parallelized simulation of a pixelated LArTPC on a GPU
e Githubs:

- larnd-sim

- hbflow

- ndlar_flow

- larpix-control
- adc64format

Matt Kramer LArTPC multi-threading workshop 20

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=26864
https://github.com/DUNE/larnd-sim
https://github.com/larpix/h5flow
https://github.com/larpix/ndlar_flow
https://github.com/larpix/larpix-control
https://github.com/larpix/adc64format

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

