Multi-processing for ND-LAr in **larnd-sim** and **ndlar_flow**

Matt Kramer, LBNL (on behalf of P. Madigan, R. Soleti, and many others)

LArTPC multi-threading workshop, Mar 3, 2023

Outline

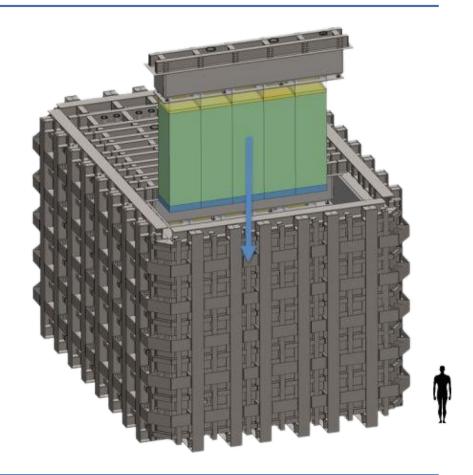
- DUNE ND-LAr, ArgonCube, LArPix, and the prototypes
- The larnd-sim simulation and its use of GPUs
- The ndlar_flow calib/reco and its use of MPI (via h5flow)
- Philosophical ramblings, mercifully brief

Some quick remarks

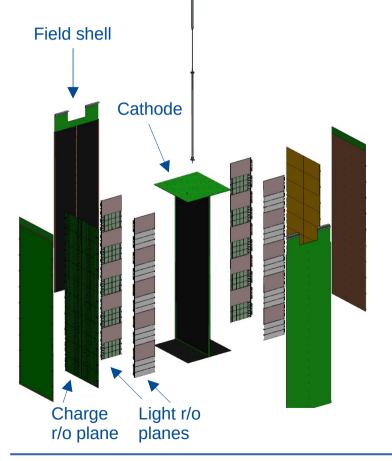
- This is a fluffy talk, full of stolen material; I did not write larnd-sim or ndlar_flow, nor have I had much past involvement in ND-LAr, ArgonCube, or LArPix
 - I also know very little about LArSoft (but do know Gaudi)
- But I work with those who *do* deserve the credit, and am broadly interested in the use of HPC within HEP
- I've aimed for this talk to serve a few purposes:
 - Share the multi-processing strategies used by larnd-sim and ndlar_flow
 - They differ both from each other and from others discussed in this workshop
 - Provide a general intro to the existing ND-LAr/2x2 software chain
 - Promote the idea of a diverse, interoperable ecosystem of software and data, so that creativity can flourish and we can learn from each other

DUNE ND-LAr

- Liquid argon near detector: Essential for the DUNE longbaseline analysis
 - Constrains flux, xsec, detector systematics
 - Same target as far detectors
- Pileup in high-rate environment
 - Traditional wire readout unfeasible
- ND-LAr: A 7x5 array of optically segmented ArgonCube modules with pixel readout

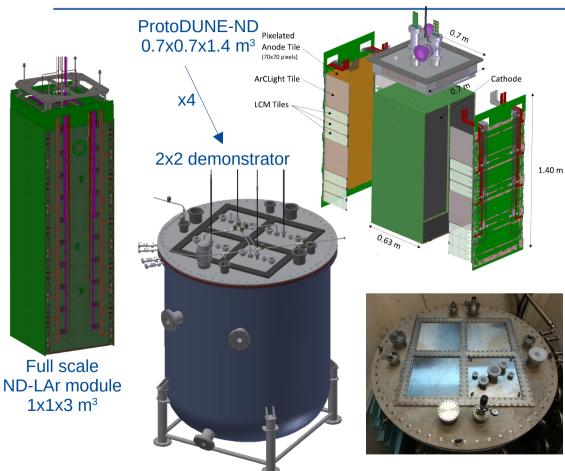


ArgonCube



- A modular LArTPC for combined deployment in arbitrarily large, segmented detectors
- Central cathode: 2 drift regions
- Pixelated charge readout using novel LArPix ASIC
- Flat-panel light detectors coupled to SiPMs; 2 alternating designs
 - ArcLight: Continuous dichroic film
 - LCM: Winding fibers

ProtoDUNE-ND and the 2x2



- ProtoDUNE-ND: Fullfeatured, scaled-down ArgonCube prototype
 - Successful demonstration of technology
- 4 modules to be deployed in 2x2 demonstrator in NuMI beam @ FNAL
 - Tested @ LHEP in Bern
 - Commissioning @ FNAL; neutrino beam this year!

Matt Kramer

Matt Kramer

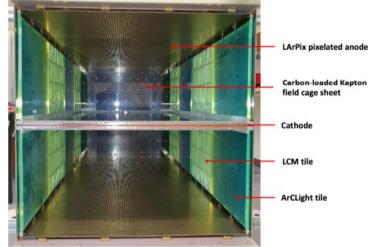
LArTPC multi-threading workshop

Charge readout: LArPix

- Novel ASIC for pixelated charge readout
 - Cold amplifiers, ADCs, IO
- Self-triggering pixels; continous stream of hits
- Flexible "hydra" network for IO routing
- Driven and read out by "Pacman" board;
 - Pacman communicates to DAQ machine via ZeroMQ/ethernet
 - DAQ \rightarrow "raw" HDF5 files
 - For further analysis, convert to "packet" HDF5 (same as produced by larnd-sim)

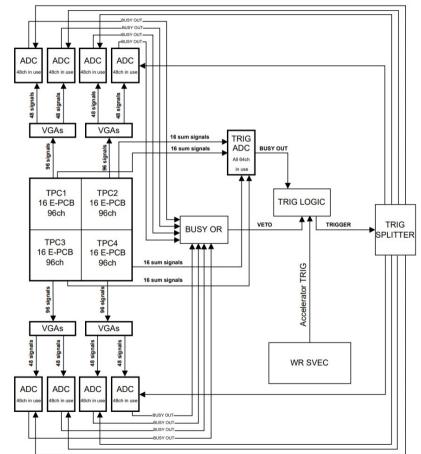
Tile front: pixel pads

8 (16) tiles per ProtoDUNE-ND TPC (Module)



Tile back: 10x10 LArPix ASICs

Light readout: ADC64

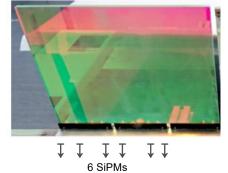


- Independent DAQ from LArPix
- 6 SiPMs per light tile
 - 8 (16) tiles per ProtoDUNE-ND TPC (module)
- 1 (1) ADC64 for all 8 ArcLight (LCM) tiles in a module
 - 8*6 = 48 active channels per ADC (out of 64)
 - Add'l ADC takes tile-sum signals for triggering (16 channels)

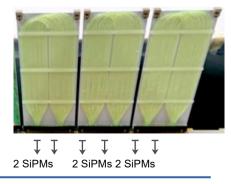
 $DAQ \rightarrow$ triggered waveforms in binary ADC64 format

- Converted on-the-fly to HDF5 in ndlar_flow

ArCLight tile



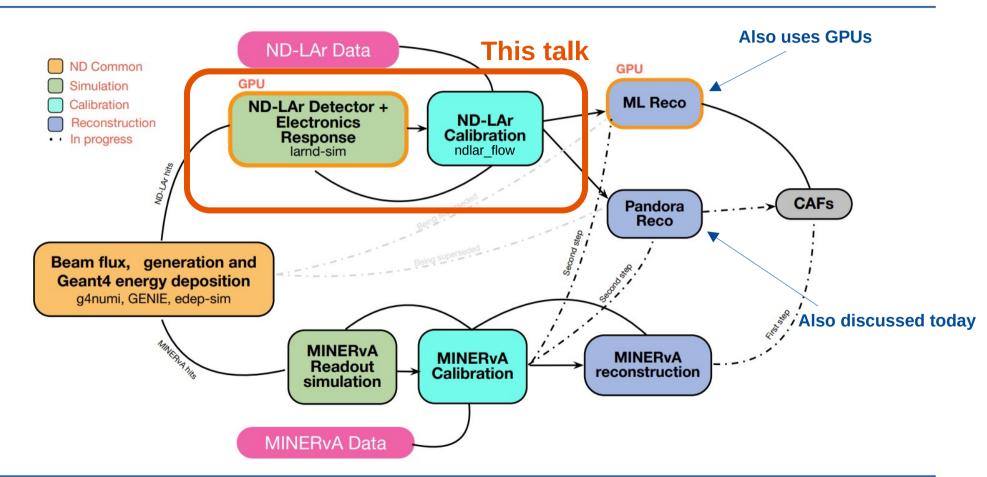
LCM tile



Matt Kramer

LArTPC multi-threading workshop

2x2 software chain



Array-oriented Python

- Both larnd-sim and ndlar_flow are written in array-oriented Python
 - Vector operations (numpy, ...), not loops
 - Avoids the performance penalty of looping in Python
 - Makes automatic acceleration (numba, ...) more likely to succeed (larnd_sim)
 - Makes MPI-ification easy: Just slice (ndlar_flow / h5flow)
 - Structs of arrays, not arrays of structs
 - OK, fine, sometimes arrays of *simple* structs
 - In any case, Plain Old Data -- no attached behavior (i.e. methods)
 - Can use and interpret without specialized libraries

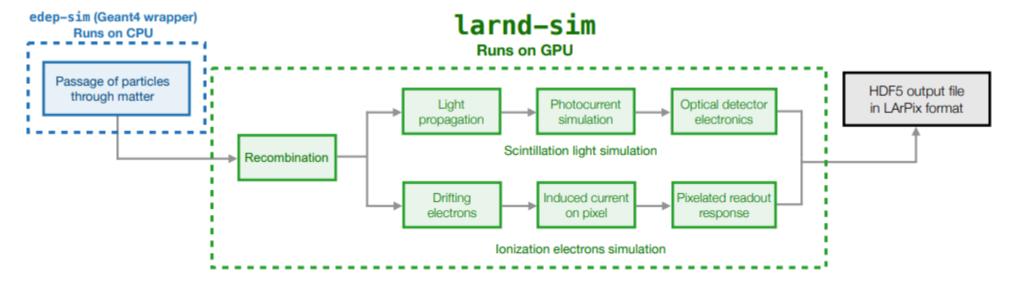
HDF5

- Both larnd-sim and ndlar_flow use HDF5 almost everywhere
 - Widely adopted, supported in many programming languages; small, specialized library
 - Compared to ROOT: Either install all of ROOT (great, but huge), or use something like uproot (great, but incomplete)
 - HDF5 datasets map well to Numpy arrays; good match for this programming style
 - Long-term data accessibility: Formally specified format, selfdescribing files, readable with nothing but a generic HDF5 library
 - To be fair, the official C++ API is painful, but there's e.g. HighFive
 - The de facto Python interface (h5py) is *nice*, though

larnd-sim design

- Completely written in Python
- All heavy computations on GPU (~15 kernels)
- Largely developed by 2 people
 - With pieces from many others; low barrier to contributing

- Input: edep-sim energy deposits in HDF5
- Output: "Packet" data, as from DAQ; plus truth info
- Idiomatic Python, JIT-compiled to CUDA
 - Just apply @numba.cuda.jit decorator
 - cupy: numpy on the GPU



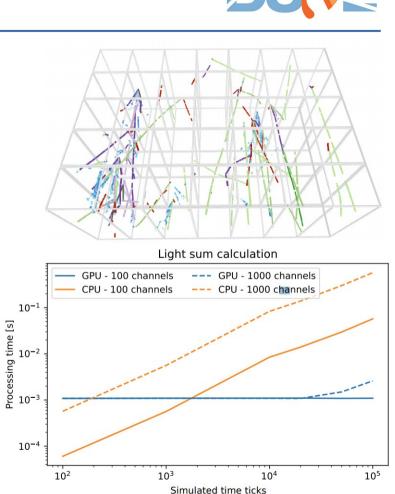
Matt Kramer

LArTPC multi-threading workshop

13

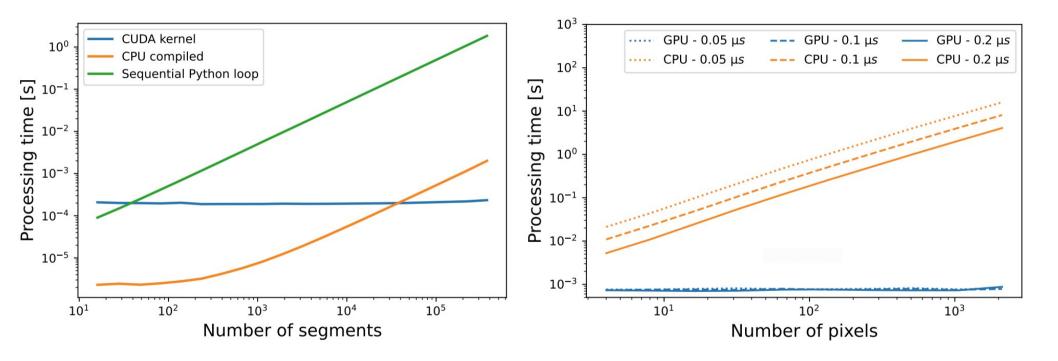
larnd-sim: Why GPUs?

- A massively parallelizable problem, over:
 - Energy depositions: ionization, recombination, diffusion, drifting, scintillation
 - Photons: propagation, detection
 - Pixels: induced current, electronics response, digitization
- *N* is high, elements are independent, and calculations can be expressed with "just math" and minimal branching
 - GPU's bread and butter
- HPC facilities increasingly providing GPUs
 - Follow the FLOPS

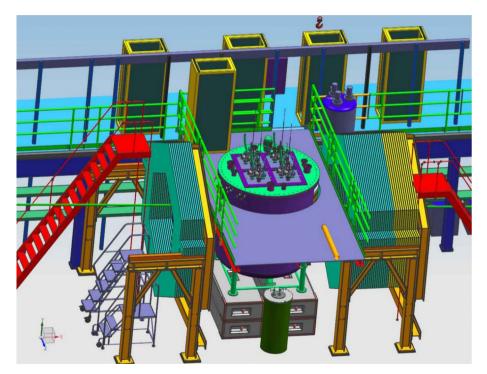


Calling a kernel

larnd-sim scaling



larnd-sim deployment



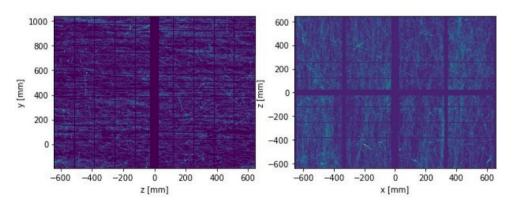
- For analysis of expected ~1yr 2x2-NuMI data, need ~10x sim statistics: O(10²² POT)
- Plan is to produce on NERSC Perlmutter system (A100 GPUs, 4x/node)
- O(100k) GPU-node-hours
- Compare to the cost of crunching all those numbers on CPUs!

Flowing along: ndlar_flow

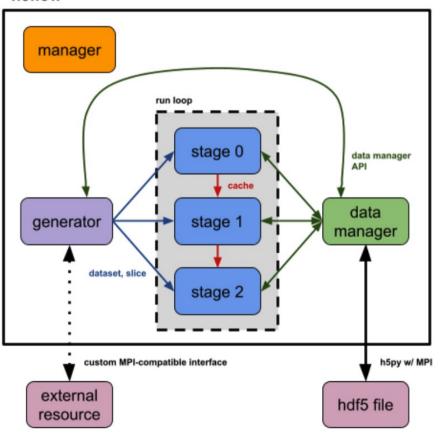
- ndlar_flow: Low-level calibration and basic reconstruction of charge+light data, real/simulated
 - Light waveforms: denoising, deconvolution, hit finding
 - Charge hits: Pedestal subtraction, ADC → charge → energy, "undrifting"
 - Event building, charge/light matching (t0)
 - Combined reco (tracklets)

1. LArPix packets from Pacman DAQ

- 1.1. Map software channel to detector location
- 1.2. Subtract predetermined pedestals
- 1.3. ADC \rightarrow ke⁻ calibration assuming uniform gain,
- 1.4. ke⁻ \rightarrow MeV calibration assuming fixed dx
- 1.5. Reconstruct drift coordinate
- 1.6. Correct ADC \rightarrow ke⁻ for gain variations
- 1.7. $ke^- \rightarrow MeV$ calibration (refined)
- 1.8. Calibrate for detector distortion, electric field, etc.



ndlar_flow design



- Also pure Python, but runs on CPUs, not GPUs
- Performance from array ops, avoiding loops
- Built on h5flow framework:
 - Can be mentally mapped onto <insert_framework_here>, but much simpler
 - "Automatic" parallelism: Dataset slices distributed via MPI
 - Flexible configuration via YAML files
 - Provenance tracking: Reference links are stored between parent and child datasets
 - Dereferencing possible in both directions, across multiple links
 - Start with arrays of raw data; successively add arrays of higher-level quantities

Matt Kramer

Closing thoughts

- larnd_sim and ndlar_flow were largely developed by one grad student and one postdoc, yet:
 - They both contain an incredible amount of carefully validated physics
 - They are inherently parallel and ready to take advantage of next-gen GPU (larndsim) and CPU (ndlar_flow) facilities
- How much of this can be credited to the flexibility and productivity offered by Python, simple data formats, etc.?
- How do we weigh those advantages against the complementary advantages of a formalized C++ framework like LArSoft?
- How do we balance coherence and consistency against creativity, innovation, and readiness for new hardware architectures?
- How do we get the best of both worlds? And if there are many worlds, how do we ensure they can interoperate?

Further reading

- larnd-sim paper: Highly-parallelized simulation of a pixelated LArTPC on a GPU
- Githubs:
 - larnd-sim
 - h5flow
 - ndlar_flow
 - larpix-control
 - adc64format