
Multi-processing for ND-LAr
in larnd-sim and ndlar_flow

Matt Kramer, LBNL
(on behalf of P. Madigan, R. Soleti, and many others)

LArTPC multi-threading workshop, Mar 3, 2023



LArTPC multi-threading workshopMatt Kramer 2

Outline
● DUNE ND-LAr, ArgonCube, LArPix, and the prototypes
● The larnd-sim simulation and its use of GPUs
● The ndlar_flow calib/reco and its use of MPI (via h5flow)
● Philosophical ramblings, mercifully brief



LArTPC multi-threading workshopMatt Kramer 3

Some quick remarks
● This is a fluffy talk, full of stolen material; I did not write larnd-sim or 

ndlar_flow, nor have I had much past involvement in ND-LAr, 
ArgonCube, or LArPix
– I also know very little about LArSoft (but do know Gaudi)

● But I work with those who do deserve the credit, and am broadly 
interested in the use of HPC within HEP

● I’ve aimed for this talk to serve a few purposes:
– Share the multi-processing strategies used by larnd-sim and ndlar_flow

● They differ both from each other and from others discussed in this workshop

– Provide a general intro to the existing ND-LAr/2x2 software chain
– Promote the idea of a diverse, interoperable ecosystem of software and data, 

so that creativity can flourish and we can learn from each other



LArTPC multi-threading workshopMatt Kramer 4

DUNE ND-LAr
● Liquid argon near detector: 

Essential for the DUNE long-
baseline analysis
– Constrains flux, xsec, detector 

systematics
– Same target as far detectors

● Pileup in high-rate environment
– Traditional wire readout unfeasible

● ND-LAr: A 7x5 array of optically 
segmented ArgonCube modules 
with pixel readout



LArTPC multi-threading workshopMatt Kramer 5

ArgonCube
● A modular LArTPC for combined 

deployment in arbitrarily large, 
segmented detectors

● Central cathode: 2 drift regions
● Pixelated charge readout using 

novel LArPix ASIC
● Flat-panel light detectors coupled to 

SiPMs; 2 alternating designs
– ArcLight: Continuous dichroic film
– LCM: Winding fibers

Field shell

Charge 
r/o plane

Light r/o 
planes

Cathode



LArTPC multi-threading workshopMatt Kramer 6

ProtoDUNE-ND and the 2x2
● ProtoDUNE-ND: Full-

featured, scaled-down 
ArgonCube prototype
– Successful demonstration 

of technology

● 4 modules to be deployed 
in 2x2 demonstrator in 
NuMI beam @ FNAL
– Tested @ LHEP in Bern
– Commissioning @ FNAL; 

neutrino beam this year!

Full scale
ND-LAr module

1x1x3 m3

ProtoDUNE-ND
0.7x0.7x1.4 m3

2x2 demonstrator

x4



LArTPC multi-threading workshopMatt Kramer 7

Charge readout: LArPix
● Novel ASIC for pixelated charge 

readout
– Cold amplifiers, ADCs, IO

● Self-triggering pixels; continous 
stream of hits

● Flexible “hydra” network for IO 
routing

● Driven and read out by 
“Pacman” board;
– Pacman communicates to DAQ 

machine via ZeroMQ/ethernet
– DAQ → “raw” HDF5 files

● For further analysis, convert to 
“packet” HDF5 (same as produced 
by larnd-sim)

Tile front: pixel pads

Tile back: 10x10 LArPix ASICs

8 (16) tiles per ProtoDUNE-ND TPC (Module)



LArTPC multi-threading workshopMatt Kramer 8

Light readout: ADC64
● Independent DAQ from LArPix
● 6 SiPMs per light tile

– 8 (16) tiles per ProtoDUNE-ND TPC (module)

● 1 (1) ADC64 for all 8 ArcLight (LCM) tiles in a module
– 8*6 = 48 active channels per ADC (out of 64)
– Add’l ADC takes tile-sum signals for triggering (16 

channels)

● DAQ → triggered waveforms in binary ADC64 format
– Converted on-the-fly to HDF5 in ndlar_flow

LCM tile

2 SiPMs 2 SiPMs 2 SiPMs

ArCLight tile

6 SiPMs



LArTPC multi-threading workshopMatt Kramer 9

2x2 software chain

ndlar_flow

Also uses GPUs

Also discussed today

This talk



LArTPC multi-threading workshopMatt Kramer 10

Array-oriented Python
● Both larnd-sim and ndlar_flow are written in array-oriented 

Python
– Vector operations (numpy, …), not loops

● Avoids the performance penalty of looping in Python
● Makes automatic acceleration (numba, …) more likely to succeed 

(larnd_sim)
● Makes MPI-ification easy: Just slice (ndlar_flow / h5flow)

– Structs of arrays, not arrays of structs
● OK, fine, sometimes arrays of simple structs
● In any case, Plain Old Data -- no attached behavior (i.e. methods)

– Can use and interpret without specialized libraries



LArTPC multi-threading workshopMatt Kramer 11

HDF5
● Both larnd-sim and ndlar_flow use HDF5 almost everywhere

– Widely adopted, supported in many programming languages; small, 
specialized library

● Compared to ROOT: Either install all of ROOT (great, but huge), or use 
something like uproot (great, but incomplete)

– HDF5 datasets map well to Numpy arrays; good match for this 
programming style

– Long-term data accessibility: Formally specified format, self-
describing files, readable with nothing but a generic HDF5 library

– To be fair, the official C++ API is painful, but there’s e.g. HighFive
● The de facto Python interface (h5py) is nice, though

https://github.com/BlueBrain/HighFive


LArTPC multi-threading workshopMatt Kramer 12

larnd-sim design
● Completely written in Python

● All heavy computations on GPU (~15 kernels)

● Largely developed by 2 people

– With pieces from many others; low barrier to 
contributing

● Input: edep-sim energy deposits in HDF5

● Output: “Packet” data, as from DAQ; plus truth info

● Idiomatic Python, JIT-compiled to CUDA

– Just apply @numba.cuda.jit decorator

– cupy: numpy on the GPU



LArTPC multi-threading workshopMatt Kramer 13

larnd-sim: Why GPUs?
● A massively parallelizable problem, over:

– Energy depositions: ionization, 
recombination, diffusion, drifting, scintillation

– Photons: propagation, detection
– Pixels: induced current, electronics 

response, digitization

● N is high, elements are independent, and 
calculations can be expressed with “just 
math” and minimal branching
– GPU’s bread and butter

● HPC facilities increasingly providing 
GPUs
– Follow the FLOPS



LArTPC multi-threading workshopMatt Kramer 14

larnd-sim: Some code
Calling a kernel

Defining a kernel



LArTPC multi-threading workshopMatt Kramer 15

larnd-sim scaling



LArTPC multi-threading workshopMatt Kramer 16

larnd-sim deployment
● For analysis of expected ~1yr 

2x2-NuMI data, need ~10x sim 
statistics: O(1022 POT)

● Plan is to produce on NERSC 
Perlmutter system (A100 
GPUs, 4x/node)

● O(100k) GPU-node-hours
● Compare to the cost of 

crunching all those numbers 
on CPUs!



LArTPC multi-threading workshopMatt Kramer 17

Flowing along: ndlar_flow
● ndlar_flow: Low-level 

calibration and basic 
reconstruction of charge+light 
data, real/simulated
– Light waveforms: denoising, 

deconvolution, hit finding
– Charge hits: Pedestal 

subtraction, ADC → charge → 
energy, “undrifting”

– Event building, charge/light 
matching (t0)

– Combined reco (tracklets)



LArTPC multi-threading workshopMatt Kramer 18

ndlar_flow design
● Also pure Python, but runs on CPUs, not 

GPUs
● Performance from array ops, avoiding 

loops
● Built on h5flow framework:

– Can be mentally mapped onto 
<insert_framework_here>, but much simpler

– “Automatic” parallelism: Dataset slices 
distributed via MPI

– Flexible configuration via YAML files
– Provenance tracking: Reference links are 

stored between parent and child datasets
● Dereferencing possible in both directions, across 

multiple links

– Start with arrays of raw data; successively 
add arrays of higher-level quantities



LArTPC multi-threading workshopMatt Kramer 19

Closing thoughts
● larnd_sim and ndlar_flow were largely developed by one grad student and 

one postdoc, yet:
– They both contain an incredible amount of carefully validated physics
– They are inherently parallel and ready to take advantage of next-gen GPU (larnd-

sim) and CPU (ndlar_flow) facilities

● How much of this can be credited to the flexibility and productivity offered by 
Python, simple data formats, etc.?

● How do we weigh those advantages against the complementary advantages 
of a formalized C++ framework like LArSoft?

● How do we balance coherence and consistency against creativity, 
innovation, and readiness for new hardware architectures?

● How do we get the best of both worlds? And if there are many worlds, how 
do we ensure they can interoperate?



LArTPC multi-threading workshopMatt Kramer 20

Further reading
● larnd-sim paper: 

Highly-parallelized simulation of a pixelated LArTPC on a GPU
● Githubs:

– larnd-sim
– h5flow
– ndlar_flow
– larpix-control
– adc64format

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=26864
https://github.com/DUNE/larnd-sim
https://github.com/larpix/h5flow
https://github.com/larpix/ndlar_flow
https://github.com/larpix/larpix-control
https://github.com/larpix/adc64format

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

