

Status of CLARA at ESB

A. ShemyakinMeeting on CLARA20 January 2023

Reliability issues

- Three instances when operation was affected by mechanical devices not working properly
 - Likely the cause was quality of electrical connections
 - Worked fine yesterday evening; not clear whether the root cause is corrected

Tuning: SPAD focusing

- With systematic tuning of SPAD positions in 3D, the profiles (SPAD rate) vs (transverse position) became rectangular
 - Indicating that the light spot is significantly smaller than the active SPAD area
 - Likely helped with day-to-day stability

SPAD1 rate (green) vs vertical position. 19-Jan-23.

Tuning: BS2 angles

- Systematic scans of BS2 angles helped to improve visibility
 - Resolvable ~10 µrad (as expected)
 - Angles to maximize SPAD1 and minimize SPAD2 are the same
 - No explanation for different visibility in SPADs

SPAD rates, in MHz, (green) vs vertical BS2 angle (in counts of picomotor). Delay is optimized in each point to maximize SPAD1 rate. 18-Jan-23.

Measurements

- Giulio took a set of measurements with time-stamped data
 - LD currents 5 50 μ A and 0.8 22 mA
- Several long stage scans were recorded
 - LD currents 10 $\mu A,$ 20 $\mu A,$ 5 mA, 22 mA
- Data are being analyzed
- All measurements were made below the assumed lasing threshold of 43 mA (68 mA nominal)
 - May try to go to this level today

Observations on the "dip" in normalized coincidence rate

- At least most of the observed effect might be explained by vibrations
 - Model for the relative difference between W12 and $f_1 \cdot f_2 \cdot \mathbf{T}$:

•
$${}^{\Delta f}/_{f_0^2 \tau} = -V_1 V_2 \frac{(k\sigma)^2}{4} (\sin kx)^2$$

- Requires (kσ) ≈0.5, or rms vibration amplitude ~8% of λ
- Correct width of the dip

Long stage scan on18-Jan-23, I_LD = 20 μ A. Top: normalized coincidence rate W12 = $\frac{f_{coinc}}{f_1 \cdot f_2}$. Middle: comparison of the coincidence rate (red) and $f_1 \cdot f_2 \cdot 25.1ns$ (blue). Bottom: difference between two data sets in the middle plot.

Fermilab

Suggestion

- Try taking high LD current measurements today
- Proceed with starting to move the box to IOTA on Monday

