

Evaluation of a CCD-based high resolution autocollimator for use as a slope sensor

Introduction

The Advanced Photon Source (APS) at Argonne National Lab generates high energy
 x-rays for experiments in a variety of fields.

 One of the ways to focus x-rays to diffraction limit is by using Kirkpatrick-Baez mirrors

- A high degree of smoothness is required to preserve source properties.
- Surface irregularities exceeding 0.2 rms micro radian slope error will cause the focused beam profile to broaden and decrease its peak intensity
- Project:
 Evaluation of a compact CCD-based high resolution autocollimator with a small probe beam for potential use as a slope sensor

Basic Principle of Autocollimators

- Uses a collimated beam reflected off a plane surface to measure small angles
- Reflected beam is focused on detector, and deviation is measured
- Fundamental relation between deviation and angle

$$\Delta = F \tan 2\theta$$

Using small angle approximation, this becomes

$$\theta = \frac{\Delta}{2F}$$

- High resolution achieved using
 - long focal length of lens
 - High spatial resolution of detector

Our Setup

Combination lenses

Collimating lenses

 The angular change in the beam path after the collimation is given by

$$\theta_2 = \frac{f_1}{f_2}\theta_1$$

- For a small in change in the angle of the mirror (θ_2) , θ_1 will be amplified by a factor of 10, as $f_2 = 100$ mm and $f_1 = 10$ mm
- Collimating lenses increases the angular resolution by a factor of 10
- Collimation was tested using a bilateral image shearing interferometer (633nm ParaLine Collimation Tester)

Focusing lenses

- Combination lenses in front of CCD increase angular resolution while decreasing installation space.
- By changing the distance between the lenses (D1), and the distance from the CCD (D2) using the following equations, we can increase equivalent focal length (f) while decreasing total size (D)

$$D_2 = f_4(f_3 - D_1)/(D_1 - f_3 + f_4)$$
$$f = f_3 f_4/(D_1 - f_3 + f_4)$$
$$D = D_1 + D_2$$

Optics Group, Advanced Photon Source

[Kuang, Cuifang, En Hong, and Qibo Feng.]

Data Processing

- Data was acquired from Prosilica GC2450 CCD using manufacturer software
 - 100 frames (2448 x 2050 8bit gray scale TIFF images) averaged in MATLAB for each point
- Centroid detection using Fourier method
 - A real profile can f(x) can be represented as a Fourier series

$$f(x) = \sum_{k=-N}^{N} C_k e^{2\pi i kx/N} \qquad C_k = a_k + ib_k$$

- If the function is symmetric about the origin x=0, imaginary components of C vanish
- Measure of asymmetry of function centered at Δx is given by

$$A(\Delta x) = \sum_{k>0}^{N} (IM[C_k e^{-2\pi i k \Delta x/N}])^2$$

If we assume symmetry of profile and limit to fundamental frequency k=1

$$IM[C_1 e^{-2\pi i \Delta x/N}] = a_1 \sin(2\pi \Delta x/N) - b_1 \cos(2\pi \Delta x/N) = 0$$
$$\Delta x = \frac{N}{2\pi} \left(arctan\left(\frac{b_1}{a_1}\right) + \Phi \right)$$

1px on camera corresponds to 3.45μm, using the equations described gives us
 1.725μrad/pixel. This gives the system a total theoretical precision of about 40.1
 nano radian

Testing and Results

- Double sided Silicon mirror
 - Surface roughness about 7Å, diameter of about 100mm
 - Mirror mounted on compact Pizeo-Electric rotation stage
 - Controlled by computer software provided by manufacturer
 - Step size of 0.01° (~174.5μrad)
- Commercial autocollimator (ELCOMAT 2000) aligned on the opposite side
 - Provides measuring in the visible range (660nm)
 - Range of 0.01 radians (35 arc minutes)
 - Precision of up to 0.5 micro radians (0.1 arc seconds)
 - LabView routine to retrieve 4KB (~500 data points) of angular position in both x-axis and y-axis deviation using RS232 Serial connection

ELCOMAT 2000 (radians)

-0.0008 -0.001

-0.001

-0.0005

- C++ code to parse data from ELCOMAT 2000
- Position from both autocollimators tested against each other.

Test Autocollimator (radians)

0.001

0.0005

Application to the alignment of the new Long Trace Profiler laser

- Use centroid detection system to align the laser
- Constant centroid position over entire length will show alignment

_	-00			n (lateral pnysii		
5	²⁸ 🗔	Λ.Λ	'	'		
(bixel)	26	"Mhow	Nohom	۸ .		-
position (p	i24 -		·	makenshing	w	-
<u>s</u> 5	22				· work	~~~~
5	:20 <u> </u>		1			
_	0	50	100	150	20	00 250
	data point					

u position /lateral physical/

Befo	ore Alignment	After Alignment		
Δχ	5.688px (0.0367mm)	Δχ	1.555px (0.0100mm)	
Δγ	6.316px (0.0407mm)	Δγ	y 2.037px (0.0131mm)	
θх	36.687 micro radian	θх	10.027 micro radian	
θу	40.740 micro radian	θу	13.141 micro radian	

