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Abstract

We evaluate the feasibility of high-resolution CCD-based autocollimator for use as

a slope sensor. The compact autocollimator is based on a CCD detector with a small

probe beam. We also explore several methods of determining the centroid of a laser

beam spot to sub-pixel accuracy, and develop MATLAB and C++ software to calculate

these values. The centroid algorithm developed is also used in aligning a laser for the

Long Trace Profiler (LTP).

1 High-resolution slope sensor

1.1 Introduction

The Advanced Photon Source at Argonne National Lab generates high energy x-ray

beams for use in experiments in a variety of fields. One of the ways to focus x-rays to

the diffraction limit is using Kirkpatrick-Baez (KB) mirrors[1]. This system uses two

elliptical cylindrical mirrors arranged in a cross mirror geometry to focus x-rays (See

figure 1).These mirrors require a high degree of smoothness to preserve the properties of

the source beam. Surface irregularities exceeding 0.2 micro radian rms slope error will

cause the focused beam profile to broaden and decrease its peak intensity[7]. Mirror

profiles are measured using a Long Trace Profiler – an instrument for measuring directly

the slope of optical surfaces over long trace lengths[8]. The aim of this project is to

test the feasibility of a CCD-based autocollimator with a small probe beam with a goal

to achieve a resolution of less than 50 nano radians for potential use in an LTP. We

based our setup on a scheme described in a paper by Kuang, Hong, and Feng [2].
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Figure 1: Kirkpatrick-Baez mirror setup to focus x-rays. [Soure: SLAC National Accelerator

Laboratory]

1.2 Basic Principle of Autocollimators

Autocollimators use a collimated beam reflected off a plane surface such as a mirror to

measure small angles with high precision. If the mirror is not completely perpendicular

to the projected beam, the reflected beam takes a different path than the projected

one. The deviation of the reflected beam can be measured by focusing the beam onto a

detector, and measuring the difference in its position compared to a undeviated beam.

The deviation (∆) of the reflected beam can be used to infer the angle of the mirror

(θ) using the fundamental relation of autocollimators

∆ = F tan 2θ (1)

where F is the focal length of the lens used. Using the small angle approximation

this can be reduced to

θ =
∆

2F
(2)

Figure 2: Fundamental Principle of Autocollimators [Source: Kuang, Cuifang, En Hong,

and Qibo Feng]

2



1.3 Setup

Figure 3: Our setup pointed at the test mirror, placed opposite to commercial autocollimator.

Our setup consisted of beam of light emitted from an randomly polarized 5mW

632.8nm HeNe Laser (Thor Labs HRR005). This beam is passed through a linear

polarizer adjusted in such a manner that the beam travels straight through a polarizing

beam splitter. After this, the beam traverses through a quarter plate, that makes the

linearly polarized light become circularly polarized. This beam then passed through a

pair of collimating lenses (f = 10mm and f = 100mm respectively) to the mirror. The

beam after being reflected off the surface of the mirror passes back though the lenses

and the quarter wave plate. This returns the beam back to being linearly polarized,

but its phase is shifted by 90◦, so this time it gets reflected by the beam splitter to the

perpendicular components. This beam is then passed through another linear polarizer

as well as a neutral density filter to control its intensity, before passing through another

pair of lenses (f = 50mm and f = −6mm)that focus the beam on the sensor of the

CCD camera.

The collimation of the beam produced through the f = 10mm and f = 100mm

lenses was verified using a bilateral image shearing interferometer, the 633 nm ParaLine

Collimation Tester. The entire setup was mounted on a breadboard which was placed

on an optical table for stability. Moreover, the setup was placed in an enclosure, to

prevent distortion from stray light and airflow.
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Figure 4: Schematic layout of our setup

1.4 Measurement principle

The two sets of combination lenses, one in front of the mirror and one in front of the

CCD, are used to both increase the angular resolution of the system, as well as reduce

the total installation space.

The size of the beam after collimation (d2) is given by the equation

d2 =
f2

f1
d1 (3)

Since f2 = 100mm and f1 = 10mm, the collimating lenses set up in front of the

test mirror increase the beam size by a factor of 10. This increases the beam diameter

from 0.57mm to 5.7mm.

(a) Increase in beam size (b) Increase in angular resolution

Figure 5: [Source: Kuang, Cuifang, En Hong, and Qibo Feng]

The angular change in the beam path after collimation, on the other hand is given
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by

θ2 =
f1

f2
θ1 (4)

This means for a small change in the angle of the mirror (θ2), θ1 will be amplified

by a factor of 10. So the first pair of lenses increases the angular resolution by a factor

of 10.

The second set of lenses in front of the CCD helps increase the angular resolution

while decreasing the installation space. By changing the distance between the lenses

(D1) and the distance from the second lens to the CCD sensor (D2), using the following

relations derived from geometrical optics we can increase the equivalent focal length (f),

while decreasing the total size(D). From (2), we know that f is directly proportional

to the resolution. In our setup, f3 = 50mm, f4 = −6mm and D1 = 59mm, which gives

D2 = 18mm from (5), D = 77mm from (7), and f = 100mm from (6).

D2 = f4(f3 −D1)/(D1 − f3 + f4) (5)

f = f3f4/(D1 − f3 + f4) (6)

D = D1 +D2 (7)

Figure 6: Lenses in front of the CCD increase the focal length f and thus the angular

resolution, but while decreasing the installation space D [Source: Kuang, Cuifang, En Hong,

and Qibo Feng]

1.5 Data Acquisition

The primary data from our system was acquired through the Allied Vision Prosilica

GC2450 high resolution CCD. We acquired 100 frames of data at 2448 × 2050 (5MP)

resolution in 8-bit grayscale TIFF images using an automation script for each position
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we tested. The frames we then averaged using a basic MATLAB routine in double

precision data to give more accurate readings as well as to reduce noise levels.

1.6 Data Processing

To get nano radian precision using this system we need to determine the position of

the focused beam to within sub pixel accuracy. The beam appears on the CCD as

a spot which can be modeled as a 2D Gaussian function. There are a number of

popular techniques that we can use to find the center of this beam spot. To this

end we tested and compared some of the popular algorithms with a simple simulation

written in MATLAB code. The results of the simulation as well as the comparison of

the techniques are detailed in Section 2. The method that we used was the Fourier

methods described in Section 2.2, which locates the centroid of a beam to an accuracy

of up to 0.024px [5].

A 1 pixel deviation of the beam on the camera sensor corresponds to 3.45µm, and

by using the formulas (2), (4) and (6), we can see that this deviation gives us an angular

resolution of 1.725µrad/pixel. Since we have sub-pixel resolution of the centroid of the

beam spot up to a precision of 0.024px [5], the total theoretical resolution of of the

system is 41.4 nano radians.

1.7 Testing and Results

To test the precision of the system we used, we used a commercial autocollimator

made by MOLLER-WENDEL, the ELCOMAT 2000. The mirror we used for testing

was a ∼ 100mm diameter silicon mirror that was polished on both sides to a surface

roughness less than 7Å. This mirror was mounted on a compact ultrasonic pizeo motor

driven rotation stage (Physik Instrumente M-660). We placed our system on one side

of the mirror, and the commercial autocollimator on the other side, aligned so that

any angular deviation of the mirror would be reflected equally on both systems.

For each data point in the test, we rotated the stage by 0.01 degrees (about

174.5µrad) and took data from both systems. For data from the commercial auto-

collimator, we connected it to a computer using a RS232 serial port and acquired 4

kilobytes of data (about 500 data points of x and y angular position) for each point

using a LabView interface. The binary data was decoded using a custom C++ pro-

gram written using scheme described by manufacturer, and averaged. The standard

deviation of the data points was less than 0.003 arc seconds (10 nano radians) in all

cases.

From our results (Figure 7) we note that while the principle of the setup works

very well, as we have a strongly linear relation between the two autocollimators (R =

.998), our error is very large (average error of 24 micro radian). This is mainly due to

6



the difficulty of aligning the optical setup on our bench to precisely focus on the CCD

sensor, as well as the reflections and other noise incident on the sensor which reduce

the effectiveness of the centroid algorithm used.
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Figure 7: Results of the relation between the ELCOMAT2000 and our test setup
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2 Comparison of methods to detect centroid of a Gaussian

laser beam spot

Our results in the previous section hinge on our ability to find the centroid of the beam

to within sub pixel resolution. Thus we studied a number of popular methods, and

ran simulations to test the effectiveness of each method. The details of the methods as

well as their advantages and disadvantages are given below.

Figure 8: Single frame of laser beam incident on CCD

2.1 Center of Mass

The center of mass method of determining center of spot is a very straightforward

method of determining the center of the laser spot. The intensities (I) of each pixel

with coordinates (x,y) are treated as mass values, and the center of mass is then

determined using the equations[5]:

xc =

∫ ∞
∞

∫ ∞
∞

xI(x, y)dxdy∫ ∞
∞

∫ ∞
∞

I(x)

(8)

yc =

∫ ∞
∞

∫ ∞
∞

yI(x, y)dxdy∫ ∞
∞

∫ ∞
∞

I(x)

(9)

This center of mass represents the position of the beam spot, similar to the way

the center of mass of a physical body is the point on the body where all the mass
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can be said to be concentrated. However, since intensity is analogous to mass, any

intensity contributes to the weight, which means that noise and other irregularities

affect the location of the center of mass, which is problematic. This method gives us a

measurement error of 0.038px[5].

2.2 Fourier Method

The Fourier method described below alleviates many of the drawbacks of the center

of mass methods. The main principle of the method is using the Fourier transform of

the profile to find a position at which the antisymmetric portion of the transform is

minimal. Another advantage of this technique is the high frequency components of the

profile can be filtered out, which usually represent the disturbances in the profile such

as noise et cetera.

The algorithm for a one dimensional profile is as follows[3]. If a real profile f(x) is

defined at 2N discrete points, the Fourier series of the profile is given by

F (x) =

N∑
k=−N

Cke
2πikx/N (10)

where the complex Fourier coefficients are given by Ck = Ak + iBk, and Ck = C∗−k
The imaginary component of the Fourier series represents the measure of asymmetry

of the signal centered around the origin, and can be represented as

A =

N∑
k=−N

[IM(Ck)]
2 (11)

If we consider a function where the origin is shifted by a distance ∆x i.e. f(x−∆x),

the Fourier series of the function is given by

F (x− ∆x) =

N∑
k=−N

Cke
−2πik∆x/Ne2πikx/N (12)

and the corresponding asymmetry is

A(∆x) =
N∑

k=−N

[
IM[Cke

−2πik∆x/N ]
]2

(13)

For an ideal or symmetric profile such as the Gaussian bell profile, the maximum of

the fundamental oscillation is simultaneously the axis of symmetry of the profile, with

all other higher order components symmetric to this axis. The high order components

also contain imperfections in the measurement of the profile such as noise and other

imperfections. For these reasons we limit ourselves the fundamental frequency k = 1.

The fundamental frequency is symmetric when
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IM[C1e
−2πi∆x/N ] = A1 sin(2π∆x/N) −B1 cos(2π∆x/N) = 0 (14)

Using definitions of Ck and ex we can simplify to show

∆x =
N

2π

(
arctan

(
B1

A1

)
+ Φ

)
(15)

This method gives us an error of 0.024 pixels[5], which is about 33% more accurate

than the Center of Mass method.

2.3 2D Gaussian curve fitting

While an ideal scenario would involve fitting a 2D gaussian profile to the image, in

practice, finding the best fit for a gaussian function on an image is a very computa-

tionally expensive task, taking far longer than the other two methods [5], so we did

not explore this method.

2.4 Results

We tested implementation of both the Center of Mass method as well as the Fourier

method in MATLAB on a number of simulated images, generated using a simple 2D

Gaussian profile. The base case of our test image was a 2500×2000px image with a 2D

Gaussian function centered at x0 = 1000px, y0 = 1000px with a spread σx = σy = 50

pixels. The function was also given an amplitude of A = 100 in arbitrary units.

f(x, y) = A exp

(
−
(

(x− xo)
2

2σ2
x

+
(y − yo)

2

2σ2
y

))
(16)

We looked at the performance of each algorithm as a function of the following

parameters.

1. Amplitude of Gaussian

2. Noise Intensity

3. Spot size (Gaussian spread)

4. Addition of secondary spot.

We noticed in all these cases the, Fourier method performed as well as or better

than the Center of Mass method. The Center of Mass method performed exceptionally

poorly in the case of significant noise, where the additional weights from the noise

greatly skewed the result. This methods also deteriorated when the Gaussian function

spread beyond the bounds of the image (e.g. with large spot size or high intensities)

as this method could not account for the information lost.

The one advantage of the center of mass methods is it speed, as it performed twice

as fast as the Fourier method. This difference is negligible however, as MATLAB

implementations of both algorithms can be run under 10milliseconds on our 8-core
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Intel i7 workstation. We also developed C++ versions of our code for fast operation

as well as easy deployment on other machines.
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Figure 9: Profile of beam shown in Figure 8 exhibiting Gaussian nature.
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3 Alignment of Long Trace Profiler laser

We used the centroid detection system we developed for the autocollimator slope sensor

to help us align the laser on the long trace profiler. We captured frames of data from a

CCD which was set up in the path of the laser beam on the traveling mount of the LTP.

We then moved the mount over 1000mm while capturing frames about every 4.5mm.

We then plotted the position of the centroid of the beam spot in both the x and the

y directions over the course of the motion of the long trace profiler. For each axis, we

adjusted the position of the laser and collected data, and repeated this process until

we minimized the deviation of the centroid along that axis.

Figure 10: Schematic showing application to Long Trace Profiler.

Since the laser beam is very susceptible to distortions from airflow and temperature

gradients, especially over longer distances, we performed this alignment in a controlled

environment. We also averaged as many as 10 scans together to further minimize the

effect of these distortions on our data.

We also looked at the effect of the intensity of the laser beam in getting reliable

data for the experiment described above. We adjusted the intensity of the beam falling

on the sensor of the CCD (Allied Vision Prosilica GC1380H 1360px × 1024px) using

a system of two linear polarizers. We found that for low intensities, the intensity

variation across the length of the system was large, and this affected the accuracy of

the centroid detection scheme. For high intensities, this variation is not as pronounced,

and this leads to better stability in the data.
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3.1 Results

Before adjusting the alignment of the laser, reference data was taken to test how far

the beam deviated over a length of 1000mm. This was compared with the results of

the system after alignment and found to be over a three-fold improvement in both the

x and the y axis. At this point, however we were limited by the mechanical limitations

of our alignment system, and were unable to further improve it’s alignment.

Table 1: Results of laser alignment

Before Alignment After Alignment

∆x 5.688px (0.0367mm) ∆x 1.555px (0.0100mm)

∆y 6.316px (0.0407mm) ∆y 2.037px (0.0131mm)

θx 36.687 micro radian θx 10.027 micro radian

θy 40.740 micro radian θy 13.141 micro radian

Figure 11: Deviation of the centroid of the beam over 1000mm before alignment
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Figure 12: Deviation of the centroid of the beam over 1000mm after alignment
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4 Conclusions

We were able to test the high-precision CCD-based autocollimator setup described.

While our results did not give us the resolution we were aiming for, the basic principles

of the system still hold. Future work in this topic might include designing a custom

built housing for the system, which could further minimize environmental effects such as

temperature variations, airflow, and stray light. The resolution could also be enhanced

by a longer effective focal length or higher spatial resolution in the CCD sensor. The

centroid algorithms we developed play a key role in this system, and also have many

other applications, as seen in the alignment of the LTP laser.
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[5] Canabal, Héctor, José Alonso, and Eusebio Bernabeu. “Laser Beam Deflectome-

try Based on a Subpixel Resolution Algorithm.” Optical Engineering 40.11 (2001):

2517. Print.

[6] Hou, Bo, Z. Y. Wu, J. L. De Bougrenet De La Tocnaye, and P. Grosso. “Charge-

coupled Devices Combined with Centroid Algorithm for Laser Beam Deviation

Measurements Compared to Position Sensitive Device.” Optical Engineering 50.3

(2011). Print.

[7] Yamauchi, K., Yamamura, K., Mimura, H., Sano, Y., Saito, A., Souvorov, A.,

Yabashi, M., Tamasaku, K., Ishikawa, T. and Mori, Y. “Nearly diffraction-limited

line focusing of a hard-X-ray beam with an elliptically figured mirror.” J. Syn-

chrotron Rad 9 (2002): 313-316. Print.

[8] Qian, Shinan, Werner Jark, and Peter Z. Takacs.“The Penta-prism LTP: A Long-

trace-profiler with Stationary Optical Head and Moving Penta Prisma).” Review of

Scientific Instruments 66.3 (1995): 2562. Print.

16


